MIKROE-957 mikroElektronika, MIKROE-957 Datasheet - Page 33

no-image

MIKROE-957

Manufacturer Part Number
MIKROE-957
Description
Other Development Tools ASLK PRO ANALOG DEVELOPMENT SYSTEM
Manufacturer
mikroElektronika
Datasheet

Specifications of MIKROE-957

Rohs
yes
Product
Analog System Lab Kit PRO
Tool Is For Evaluation Of
TL082, MPY634
Operating Supply Voltage
2.5 V to 5.5 V
Description/function
Analog Lab Kit for Undergraduate Engineering
Maximum Operating Temperature
+ 125 C
Minimum Operating Temperature
- 40 C
Frequency Response of Filters
The magnitude and phase response of LPF, BPF, BSF, and HPF filters are shown in
Figure 4.2. Note that the low-pass filter frequency response peaks at
and has a value equal to
to tune the filter to a desired frequency
experiment.
For the bandpass filter, the magnitude response peaks at
4.2 Specification
Design a Band Pass and a Band Stop filter. For the BPF, assume
4.3 Measurements to be taken
~
~
~
~
-
~
-
~
~
H Q
H Q
~
~
Q
~
Q
~
-
~
Q
Q
~
H Q
~
Q
V
~
V
~
Q
~
H
H
y
y
V
~
H
y
V
V
V
V
V
V
d
V
d
d
d
d
d
r
r
r
f
f
f
f
f
f
V
V
V
V
V
V
V
V
1
2
02
03
02
04
01
04
02
04
p
p
_
_
p
_
~
~
~
~
~
~
i
i
i
i
i
i
0
0
i
z
z
i
0
0
0
0
z
0
0
0
0
0
=
0
=
=
0
=
0
0
0
0
0
=
0
=
0
0
4
4
4
2
2
2
$
$
$
1
1
=
=
1
=
=
=
=
=
=
=
t
t
t
=
=
=
=
=
=
=
=
=
=
=
=
0
0
0
H Q
H Q
H Q
=
=
=
=
=
=
=
=
Q
Q
Q
H Q
H Q
H Q
i
i
i
$
$
$
-
-
-
1
1
10
10
1
10
. The bandstop filter shows a null magnitude response at
V
V
V
~
~
1
~
1
10
10
0
1
0
10
0
1
1
0
0
1
0
=
=
=
Analog System Lab Kit PRO
1
1
10
10
1
10
2
2
10
10
2
10
~
b
~
kHz
~
kHz
p
$
. For the BSF, assume
~
p
$
~
kHz
Q
~
Q
p
$
Steady State Response - Apply a square wave input (Try
V
~
y
Frequency Response - Apply the sine wave input and obtain the magnitude
and the phase response.
b
b
b
H
b
V
b
b
V
V
b
V
-
H Q
H
N
d
d
f
f
r
2
V
V
4
4
0
0
4
0
1
-
-
V
-
V
1
1
1
1
1
1
1
kHz
kHz
kHz
$
$
$
p
03
01
02
04
kHz
kHz
~
kHz
_
0
0
z
~
0
0
0
0
0
i
i
i
i
0
sin
sin
=
=
sin
0
b
b
1
b
Q
1
Q
1
Q
4
and is given by
2
r
r
=
=
r
$
+
1
kHz
kHz
=
kHz
+
+
+
+
+
+
+
t
=
1
1
1
=
=
=
0
H Q
=
a
2
2
=
2
=
=
=
H Q
Q
b
$
i
2
2
2
-
-
-
$
$
$
1
10
+
+
1
Q
1
Q
+
1
Q
_
1
_
10
V
_
0
H
~
1
~
~
1
~
~
~
~
~
~
0
10
10
10
=
1
10
2
100
100
100
10
+
b
b
kHz
p
$
H
H
b
b
2
2
2
0
s
0
-
4
0
s
s
s
0
0
0
s
s
0
1
0
s
1
0
s
1
0
1
~
~
~
kHz
kHz
$
s
s
s
RC
Q
$
Q
sin
0
Q
Q
Q
Q
0
Q
Q
Q
4
4
4
H
b
1
r
+
+
+
kHz
2
0
2
~
0
2
0
+
1
$
$
s
2
2
a
2
2
rad s
rad s
rad s
r
r
Band Pass output will output the fundamental frequency of the
r
square wave multiplied by the gain at the centre frequency. The
amplitude at this frequency is given by
peak amplitude of the input square wave.
T he Band Stop filter’s output will carry all the harmonics of the
square wave, other than fundamental. This illustrates the application
of BSF as a distortion analyzer.
0
b
2
~
+
+
+
+
~
-
+
+
l
+
l
+
l
$
2
0
+
1
Q
s
2
s
H
t
t
t
_
~
~
10
~
~
$
$
$
100
0
0
0
i
i
i
l
to both BPF and BSF circuits and observe the outputs.
+
H
H
H
H
~
~
k
0
2
/
/
/
~
~
~
~
0
s
~
0
~
s
s
s
0
s
0
+
+
+
s
s
s
s
s
s
s
~
$
s
Q
Q
0
Q
Q
0
0
0
4
2
0
H
2
0
2
0
2
0
2
0
2
0
2
0
2
0
2
2
2
2
2
2
~
2
$
2
2
0
s
2
0.1
0.1
0.1
rad s
r
l
l
l
l
l
l
l
l
0
+
+
~
+
l
+
2
0
s
2
t
$
i
l
0
H
/
~
~
k
~
~
sin
sin
sin
s
s
+
~
~
s
-
~
H Q
s
~
Q
~
Q
V
~
H
y
V
d
r
d
f
f
V
0
2
0
2
0
2
0
2
0
04
p
_
2
2
~
2
~
2
0
z
0
0
0
0
=
=
0
0
i
4
2
0.1
l
=
=
=
$
l
1
l
l
t
_
_
_
~
~
-
=
~
H Q
=
~
Q
~
Q
=
=
V
~
H
y
V
V
d
0
H Q
r
=
d
Q
~
~
~
~
f
f
~
200
200
V
~
y
200
V
V
V
V
H Q
V
-
H Q
Q
Q
H
d
d
$
i
f
f
r
V
V
02
04
V
-
V
1
10
p
_
~
~
i
0
z
0
0
0
0
=
=
0
0
i
01
02
04
~
1
10
V
0
4
p
_
1
0
2
z
~
~
0
0
0
$
0
i
i
0
i
i
=
=
=
0
=
=
=
0
1
. This information about phase variation can be used
1
10
2
10
4
t
sin
2
=
=
$
1
=
=
kHz
=
$
=
=
b
0
p
H Q
t
=
Q
=
=
=
=
H Q
0
i
=
=
-
4
0
$
H Q
1
=
=
H Q
Q
-
kHz
1
10
i
kHz
$
r
$
r
r
-
V
~
1
10
0
1
sin
10
b
1
1
Q
0
r
V
=
0
~
kHz
1
10
1
10
2
10
_
+
1
0
=
1
1
kHz
10
$
t
t
2
t
b
b
p
10
2
b
0
kHz
p
$
200
b
-
b
4
i
i
i
1
1
2
kHz
4
0
1
1
-
kHz
$
$
+
1
Q
1
1
kHz
_
sin
$
b
1
Q
kHz
~
10
r
sin
Q
kHz
+
+
b
1
100
1
r
+
+
kHz
a
+
2
+
2
1
2
0
s
0
a
2
-
~
$
b
s
+
1
Q
2
r
-
_
$
Q
4
~
~
+
1
Q
10
H
_
~
~
100
10
2
0
~
. The phase sensitivity
~
100
t
H
2
rad s
2
r
H
0
s
0
s
0
i
0
~
2
l
+
s
0
s
0
s
s
0
s
0
~
and
0
Q
Q
t
4
s
Q
$
Q
0
Q
Q
$
4
2
0
i
$
2
rad s
~
2
0
r
H
$
/
s
~
2
rad s
~
+
r
+
s
l
+
+
+
~
+
l
+
s
t
2
0
0
s
0
2
2
0
$
t
0
~
~
-
~
H Q
~
Q
~
Q
V
~
H
y
i
V
2
d
r
d
$
f
f
l
V
0
~
~
-
~
H Q
~
Q
~
Q
V
~
H
y
i
V
H
V
V
d
0.1
/
r
k
l
~
~
d
f
f
04
V
V
H
V
p
_
+
/
~
s
~
k
s
~
~
~
~
0
z
0
0
0
0
=
=
0
0
s
01
i
s
02
04
p
_
+
s
s
2
~
~
4
i
0
=
0
z
=
=
0
0
0
$
0
=
=
0
0
0
i
1
i
t
4
2
0
2
0
. This is demonstrated in the next
2
$
0
=
=
=
=
=
=
=
2
0
2
2
0
2
0
0
1
H Q
t
2
0
2
Q
2
=
2
H Q
2
2
=
=
=
=
0
$
i
H Q
0.1
l
=
l
=
Q
=
-
H Q
sin
i
0.1
l
1
10
$
l
l
~
-
1
10
V
0
1
10
1
0
=
1
~
10
1
2
10
10
V
0
1
0
kHz
$
=
b
1
p
10
2
10
0
kHz
$
b
-
b
4
b
p
1
kHz
0
_
sin
1
-
4
kHz
$
1
1
kHz
sin
sin
b
1
Q
.
kHz
$
r
200
kHz
sin
+
b
1
Q
1
r
+
kHz
2
+
+
1
a
2
2
_
$
b
+
1
Q
2
-
_
_
200
$
~
+
1
Q
10
_
H
~
100
200
~
~
10
r
100
2
s
0
H
~
2
0
0
s
s
0
~
s
H
0
s
0
~
~
-
t
~
H Q
~
Q
~
Q
V
~
H
y
N
N
V
~
V
V
V
d
d
r
Q
2
4
f
f
s
V
V
V
V
$
Q
i
0
Q
Q
4
2
0
03
01
02
04
p
_
~
~
r
2
0
0
i
i
i
i
0
z
rad s
0
0
0
0
=
=
0
0
~
2
0
r
4
$
2
r
$
s
-
2
2
=
=
rad s
=
~
~
~
~
1
~
V
~
y
r
t
l
+
-
H Q
Q
Q
H
V
V
=
V
d
d
r
=
t
=
=
=
V
+
~
f
f
0
H Q
V
+
l
=
V
+
=
=
=
Q
t
2
0
H Q
t
i
i
$
$
01
2
s
02
04
p
_
t
0
z
~
~
0
0
-
0
i
0
1
10
i
i
i
0
=
=
0
i
$
4
V
1
0
2
=
=
~
$
1
i
10
0
l
H
1
~
1
=
~
1
~
~
~
/
V
~
=
~
-
0
H Q
Q
Q
H
t
y
V
V
V
d
d
=
=
+
r
1
=
10
2
10
s
V
~
H
f
f
/
=
k
V
~
V
~
b
0
H Q
kHz
$
=
s
=
b
=
H Q
b
b
Q
+
p
s
~
s
~
~
~
Q
~
Q
V
~
y
i
01
V
02
04
d
-
H Q
r
0
H
$
p
_
0
d
1
-
z
~
~
-
f
f
4
V
2
i
0
V
i
1
i
0
1
1
0
0
0
0
1
=
10
=
kHz
0
0
0
4
$
2
2
0
2
V
$
kHz
0
RC
2
0
2
0
1
~
=
1
=
10
p
=
0
04
2
1
0
~
_
=
t
sin
0
2
z
2
~
0
b
0
0
1
=
Q
=
0
0.1
=
i
l
i
0
=
1
=
10
0
2
10
=
r
~
~
~
+
2
~
~
0
~
4
H Q
kHz
b
=
=
+
=
-
H Q
Q
+
Q
=
+
Q
=
V
H
$
y
kHz
p
$
0.1
l
b
l
d
d
b
1
l
=
H Q
1
r
i
f
f
t
$
, where
a
4
-
0
=
=
2
=
1
-
0
H Q
1
=
10
1
1
b
kHz
=
H Q
Q
p
2
_
V
$
z
~
~
-
~
$
1
10
kHz
i
0
$
i
0
0
1
0
0
0
0
=
=
0
0
sin
=
-
Q
+
1
Q
4
b
2
1
$
1
10
1
10
2
10
_
1
=
H
~
=
and is given by
=
r
+
b
~
~
~
1
~
~
10
-
~
H Q
V
kHz
~
0
t
Q
~
kHz
Q
p
$
V
~
H
y
10
V
V
+
1
b
V
+
b
is maximum at
V
~
d
sin
r
1
0
=
=
d
=
=
=
f
f
100
V
V
V
0
2
V
4
1
0
10
H Q
2
~
a
1
+
Q
-
~
~
~
10
~
Q
~
Q
sin
V
~
y
H
H Q
V
1
V
1
V
H
V
kHz
d
kHz
-
$
i
H Q
r
H
N
03
01
02
04
2
$
d
p
$
f
p
f
_
2
b
-
V
V
0
V
0
2
V
~
~
kHz
i
-
i
s
0
s
i
0
s
0
.
z
s
1
0
10
0
0
0
0
=
=
$
0
sin
0
-
i
4
0
~
4
1
1
+
b
~
1
Q
~
1
Q
~
~
V
2
~
~
$
p
H
03
~
01
02
1
04
-
s
kHz
10
H Q
=
Q
0
Q
~
=
V
=
H
y
r
_
_
V
1
0
~
+
0
V
Q
$
Q
d
d
1
0
z
~
kHz
kHz
=
0
$
r
0
0
10
t
0
0
i
~
+
i
~
+
i
0
Q
i
Q
f
f
0
=
=
0
4
V
V
H
1
1
10
2
2
10
=
=
sin
=
4
=
Q
0
_
=
=
H Q
100
$
=
b
a
=
1
=
2
kHz
1
Q
p
$
=
r
02
H
04
=
~
H Q
2
0
p
_
i
t
+
b
=
+
~
$
~
kHz
=
=
$
_
=
0
1
i
4
i
0
0
s
2
z
2
2
0
0
0
0
=
=
0
0
0
H Q
=
rad s
s
-
0
-
=
-
4
200
1
10
$
r
1
=
s
2
0
s
0
=
kHz
=
2
H Q
Q
$
0
~
+
1
1
Q
=
=
=
$
V
200
$
i
+
+
~
kHz
~
1
10
t
0
_
H
~
s
2
1
+
l
+
-
sin
~
$
Q
0
Q
~
Q
2
~
0
0
=
=
=
=
10
1
10
=
1
Q
0
1
$
H Q
10
4
2
10
=
+
=
Q
2
s
Q
r
1
10
100
V
0
t
1
H Q
kHz
1
~
_
kHz
i
$
+
b
1
b
b
b
0
$
p
=
~
~
H
2
0
-
$
10
1
10
2
~
0
$
2
0
0
1
10
10
i
s
2
s
0
1
2
l
-
4
100
rad s
kHz
$
0
1
~
b
s
0
b
1
s
0
1
~
~
kHz
V
~
~
Q
~
Q
r
p
V
~
y
H
V
~
V
b
V
~
b
V
H
1
10
-
0
H Q
H
N
2
1
~
0
~
d
d
kHz
=
f
$
f
r
/
2
+
~
+
V
l
s
+
V
k
~
-
~
4
$
0
Q
$
Q
0
1
2
1
Q
s
1
V
1
V
1
10
2
10
sin
+
2
0
1
Q
Q
s
b
s
1
Q
s
r
kHz
4
s
0
s
s
0
kHz
_
p
$
kHz
r
$
p
2
RC
b
~
+
b
03
01
02
04
~
kHz
t
_
~
+
0
+
+
0
z
~
10
0
0
0
r
0
sin
s
~
0
i
2
0
i
1
4
i
0
0
i
Q
0
=
=
0
Q
Q
$
$
-
2
0
b
1
100
4
r
s
1
0
1
a
2
2
0
2
2
0
2
0
kHz
2
4
=
rad s
=
i
$
2
+
2
+
2
+
+
1
=
t
$
kHz
r
1
2
2
kHz
t
2
b
=
H
2
=
sin
/
=
is the
=
2
~
0
k
+
~
+
-
l
~
+
a
2
0
t
$
H Q
=
0
b
~
=
1
Q
rad s
i
0.1
2
s
0
2
=
l
+
l
=
1
l
Q
=
l
H Q
Q
r
r
+
s
s
b
s
2
kHz
_
$
i
2
+
H
~
+
-
i
t
Q
~
1
~
~
-
10
$
+
l
+
+
Q
4
1
10
a
0
$
2
1
100
_
l
2
0
0
H
0
1
10
i
V
0
+
2
~
0
2
~
~
1
~
10
2
1
H
2
2
~
0
and
t
and
=
-
2
H
2
$
1
10
2
100
~
~
0
k
rad s
/
10
s
$
0
+
s
0
~
1
s
Q
0
~
s
0
r
i
0.1
l
s
+
b
b
~
H
_
kHz
+
p
$
l
s
l
s
b
b
+
~
~
0
s
2
10
H
Q
$
s
Q
0
s
0
-
4
0
/
sin
~
~
1
0
Q
1
s
Q
0
s
0
1
100
4
H
0
1
~
kHz
0
2
s
0
t
+
kHz
$
s
H
2
0
$
2
0
s
2
RC
2
~
Q
2
Q
2
0
0
Q
Q
sin
0
$
2
2
Q
4
s
s
0
H
s
0
2
b
1
i
rad s
0
~
0.1
r
r
2
0
2
0
+
+
+
kHz
0
l
s
l
~
l
$
+
2
0
1
2
+
2
+
Q
~
/
rad s
~
0
Q
s
+
l
a
+
2
2
4
sin
r
2
0
+
0.1
_
2
0
s
b
2
t
l
2
0
+
+
~
-
+
l
+
$
$
2
2
0
$
rad s
200
0
s
+
1
Q
r
i
2
0
l
2
H
t
_
~
~
10
2
~
+
~
~
+
l
~
H
$
/
i
100
~
k
l
~
0
~
0.1
sin
s
s
+
s
+
s
s
H
t
H
_
/
~
0
~
k
~
~
2
4.4 What you should submit
$
0
s
0
0
s
s
s
0
s
0
s
s
0
sin
i
+
2
0
s
~
200
2
0
2
0
2
0
H
2
$
s
k
2
Q
2
Q
0
2
Q
Q
/
~
~
1
2
3
0
S.No. Input Frequency Phase
4
S.No. Input Frequency Phase
2
H
0
2
0
2
0
2
0
+
s
s
0.1
r
l
l
2
l
2
l
2
2
~
$
2
0
_
sin
0
s
2
rad s
0.1
r
0
l
2
0
l
2
0
l
l
200
0
_
t
2
2
+
+
~
+
l
+
1
2
3
4
1
2
3
4
2
0
0.1
s
i
l
l
2
200
t
r
$
i
l
0
sin
Table 4-3: Frequency Response of a BSF with
_
H
/
~
~
k
~
~
t
sin
Simulate the circuits and obtain the Steady-State response and Frequency
response.
Take the plots of the Steady-State response and Frequency response from the
oscilloscope and compare it with simulation results.
Frequency Response - Apply a sine wave input and vary its input frequency
to obtain the phase and magnitude error. Use Table 4.2 and 4.3 to note your
readings. The nature of graphs should be as shown above.
s
s
200
+
s
s
i
r
sin
0
2
0
2
0
2
0
2
0
2
2
2
2
_
r
t
0.1
l
200
_
l
l
l
i
t
200
Table 4-2: Frequency Response of a BPF with
r
_
i
200
t
sin
i
r
r
t
_
r
i
t
200
i
t
i
r
t
i
Band Pass
Band Pass
Magnitude
Magnitude
N
N
N
~
H
~
~
-
~
H Q
~
Q
~
Q
V
V
V
V
d
N
N
2
d
f
f
V
V
V
V
03
01
02
04
~
~
0
0
i
i
0
z
0
0
0
0
=
=
i
i
th
2
2
2
=
=
=
-
1
=
=
=
0
=
=
Q
=
=
H Q
-
Phase
Phase
1
10
~
1
~
~
-
~
~
Q
~
Q
V
~
~
y
1
10
N
N
N
H
V
V
2
V
V
d
H Q
1
r
H
N
N
1
d
f
0
f
2
V
V
V
V
1
10
kHz
b
b
b
b
p
03
01
02
04
~
_
0
0
i
0
z
~
0
0
0
0
0
0
0
i
i
i
1
-
=
=
4
th
1
2
1
1
4
2
=
=
$
kHz
2
-
1
=
kHz
RC
t
=
=
=
=
=
0
b
1
Q
H Q
=
=
=
=
H Q
+
Q
kHz
+
+
+
$
i
1
-
a
2
1
10
1
1
10
V
0
2
1
b
~
2
1
0
-
=
1
10
2
+
1
Q
10
kHz
$
b
b
b
b
H
p
~
~
~
~
-
4
0
1
1
1
1
+
kHz
Band Stop
H
Band Stop
kHz
$
RC
2
0
sin
b
1
s
Q
0
s
0
s
0
s
0
,
~
r
+
+
+
+
s
kHz
1
$
Q
~
Q
0
Q
Q
~
~
~
~
~
N
N
a
N
H
2
H
-
H Q
Q
Q
N
N
V
Magnitude
V
V
V
d
Magnitude
d
2
V
f
f
b
V
2
~
V
2
V
0
-
$
s
2
$
+
Q
03
01
02
04
0
1
0
z
~
~
0
_
0
0
H
0
i
0
i
i
i
0
=
=
~
th
~
~
~
+
~
10
4
+
+
l
,
+
2
=
=
2
-
2
2
0
1
=
100
=
2
s
=
=
+
H
0
~
H
0
~
2
=
=
~
-
=
~
H Q
~
=
$
Q
~
Q
H Q
V
~
Q
H
y
N
N
V
s
0
V
s
0
V
0
V
0
d
0
r
N
N
s
~
s
d
l
f
f
$
2
V
V
V
V
-
1
10
$
Q
s
~
H
03
Q
01
02
0
Q
04
Q
~
k
~
~
p
_
V
1
~
s
~
~
4
1
10
0
0
H
i
2
1
0
s
z
0
0
s
0
s
0
1
=
0
=
0
0
i
i
i
~
0
2
4
1
10
2
2
$
2
=
=
=
$
-
2
1
b
rad s
t
kHz
p
s
b
2
0
b
b
0
r
=
2
0
2
=
0
=
2
0
=
=
2
0
4
H Q
0
=
0
=
+
~
1
2
1
2
2
-
+
=
+
l
=
+
H Q
Q
1
1
kHz
$
i
2
0
kHz
2
s
RC
-
l
l
l
t
l
1
10
b
1
Q
1
$
1
10
V
0
2
1
+
~
+
i
kHz
1
l
0
0
+
+
=
1
1
10
2
10
2
~
H
a
kHz
$
/
b
~
b
k
b
~
b
~
p
page 33
b
s
s
s
s
2
+
1
-
4
0
-
1
1
1
kHz
+
1
Q
kHz
$
RC
0
H
~
2
0
2
0
2
0
2
0
~
~
~
sin
b
1
Q
2
2
2
2
r
+
+
+
+
+
kHz
1
H
0.1
l
l
0
2
a
l
l
2
s
0
s
0
s
0
s
0
~
b
2
-
s
Q
$
Q
0
Q
Q
$
+
Q
1
H
_
H
~
~
~
~
10
~
2
0
$
100
s
2
+
H
sin
2
0
0
+
+
~
+
l
+
s
0
s
0
s
0
s
0
~
2
0
s
2
$
Q
s
Q
0
Q
Q
4
$
H
l
0
~
2
0
$
H
2
~
~
k
~
rad s
_
s
~
r
s
0
s
s
s
+
~
+
+
l
+
200
2
0
0
2
s
2
0
2
0
t
2
0
2
0
2
2
$
2
2
0
i
l
l
l
l
l
~
H
/
~
k
~
~
+
s
s
s
s
2
0
0
r
2
0
2
0
2
0
2
2
2
2
0.1
l
l
t
l
l
i
si

Related parts for MIKROE-957