PIC18F4520-I/P Microchip Technology, PIC18F4520-I/P Datasheet - Page 36

IC MCU FLASH 16KX16 40DIP

PIC18F4520-I/P

Manufacturer Part Number
PIC18F4520-I/P
Description
IC MCU FLASH 16KX16 40DIP
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F4520-I/P

Program Memory Type
FLASH
Program Memory Size
32KB (16K x 16)
Package / Case
40-DIP (0.600", 15.24mm)
Core Processor
PIC
Core Size
8-Bit
Speed
40MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number Of I /o
36
Eeprom Size
256 x 8
Ram Size
1.5K x 8
Voltage - Supply (vcc/vdd)
4.2 V ~ 5.5 V
Data Converters
A/D 13x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
1536 B
Interface Type
MSSP, SPI, I2C, PSP, USART
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
36
Number Of Timers
1 x 8
Operating Supply Voltage
2 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, 53275-917, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE2000, ICE4000, DV164136, DM163022
Minimum Operating Temperature
- 40 C
On-chip Adc
13 bit
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
DVA18XP400 - DEVICE ADAPTER 18F4220 PDIP 40LD444-1001 - DEMO BOARD FOR PICMICRO MCUACICE0206 - ADAPTER MPLABICE 40P 600 MIL
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F4520-I/P
Manufacturer:
ST
Quantity:
104
Part Number:
PIC18F4520-I/P
Manufacturer:
MICROCH
Quantity:
20 000
Part Number:
PIC18F4520-I/PT
Manufacturer:
TI
Quantity:
14 300
Part Number:
PIC18F4520-I/PT
Manufacturer:
Microchip Technology
Quantity:
33 055
Part Number:
PIC18F4520-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC18F4520-I/PT
Manufacturer:
MICROCHIP
Quantity:
510
Part Number:
PIC18F4520-I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
PIC18F4520-I/PT
0
PIC18F2420/2520/4420/4520
3.1.3
The length of the transition between clock sources is
the sum of two cycles of the old clock source and three
to four cycles of the new clock source. This formula
assumes that the new clock source is stable.
Three bits indicate the current clock source and its
status. They are:
• OSTS (OSCCON<3>)
• IOFS (OSCCON<2>)
• T1RUN (T1CON<6>)
In general, only one of these bits will be set while in a
given power-managed mode. When the OSTS bit is
set, the primary clock is providing the device clock.
When the IOFS bit is set, the INTOSC output is
providing a stable 8 MHz clock source to a divider that
actually drives the device clock. When the T1RUN bit is
set, the Timer1 oscillator is providing the clock. If none
of these bits are set, then either the INTRC clock
source is clocking the device or the INTOSC source is
not yet stable.
If the internal oscillator block is configured as the
primary clock source by the FOSC<3:0> Configuration
bits, then both the OSTS and IOFS bits may be set
when in PRI_RUN or PRI_IDLE modes. This indicates
that the primary clock (INTOSC output) is generating a
stable 8 MHz output. Entering another power-managed
RC mode at the same frequency would clear the OSTS
bit.
3.1.4
The power-managed mode that is invoked with the
SLEEP instruction is determined by the setting of the
IDLEN bit at the time the instruction is executed. If
another SLEEP instruction is executed, the device will
enter the power-managed mode specified by IDLEN at
that time. If IDLEN has changed, the device will enter
the new power-managed mode specified by the new
setting.
DS39631E-page 34
Note 1: Caution should be used when modifying a
2: Executing a SLEEP instruction does not
CLOCK TRANSITIONS AND STATUS
INDICATORS
MULTIPLE SLEEP COMMANDS
single IRCF bit. If V
possible to select a higher clock speed
than is supported by the low V
Improper device operation may result if
the V
necessarily place the device into Sleep
mode. It acts as the trigger to place the
controller into either the Sleep mode or
one of the Idle modes, depending on the
setting of the IDLEN bit.
DD
/F
OSC
specifications are violated.
DD
is less than 3V, it is
Advance Information
DD
.
3.2
In the Run modes, clocks to both the core and
peripherals are active. The difference between these
modes is the clock source.
3.2.1
The PRI_RUN mode is the normal, full-power execu-
tion mode of the microcontroller. This is also the default
mode upon a device Reset unless Two-Speed Start-up
is enabled (see Section 23.3 “Two-Speed Start-up”
for details). In this mode, the OSTS bit is set. The IOFS
bit may be set if the internal oscillator block is the
primary clock source (see Section 2.7.1 “Oscillator
Control Register”).
3.2.2
The SEC_RUN mode is the compatible mode to the
“clock switching” feature offered in other PIC18
devices. In this mode, the CPU and peripherals are
clocked from the Timer1 oscillator. This gives users the
option of lower power consumption while still using a
high-accuracy clock source.
SEC_RUN mode is entered by setting the SCS<1:0>
bits to ‘01’. The device clock source is switched to the
Timer1 oscillator (see Figure 3-1), the primary oscilla-
tor is shut down, the T1RUN bit (T1CON<6>) is set and
the OSTS bit is cleared.
On transitions from SEC_RUN mode to PRI_RUN
mode, the peripherals and CPU continue to be clocked
from the Timer1 oscillator while the primary clock is
started. When the primary clock becomes ready, a
clock switch back to the primary clock occurs (see
Figure 3-2). When the clock switch is complete, the
T1RUN bit is cleared, the OSTS bit is set and the
primary clock is providing the clock. The IDLEN and
SCS bits are not affected by the wake-up; the Timer1
oscillator continues to run.
Note:
Run Modes
PRI_RUN MODE
SEC_RUN MODE
The Timer1 oscillator should already be
running prior to entering SEC_RUN mode.
If the T1OSCEN bit is not set when the
SCS<1:0> bits are set to ‘01’, entry to
SEC_RUN mode will not occur. If the
Timer1 oscillator is enabled, but not yet
running, device clocks will be delayed until
the oscillator has started. In such situa-
tions, initial oscillator operation is far from
stable and unpredictable operation may
result.
© 2008 Microchip Technology Inc.

Related parts for PIC18F4520-I/P