ATMEGA645V-8AU Atmel, ATMEGA645V-8AU Datasheet - Page 128

IC AVR MCU FLASH 64K 64TQFP

ATMEGA645V-8AU

Manufacturer Part Number
ATMEGA645V-8AU
Description
IC AVR MCU FLASH 64K 64TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheet

Specifications of ATMEGA645V-8AU

Core Processor
AVR
Core Size
8-Bit
Speed
8MHz
Connectivity
SPI, UART/USART, USI
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
64KB (32K x 16)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
Processor Series
ATMEGA64x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
4 KB
Interface Type
SPI, UART, USI
Maximum Clock Frequency
8 MHz
Number Of Programmable I/os
54
Number Of Timers
3
Operating Supply Voltage
1.8 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Controller Family/series
AVR MEGA
No. Of I/o's
54
Eeprom Memory Size
2KB
Ram Memory Size
4KB
Cpu Speed
8MHz
No. Of Timers
3
Rohs Compliant
Yes
Data Rom Size
2 KB
Height
1 mm
Length
14 mm
Supply Voltage (max)
5.5 V
Supply Voltage (min)
2.7 V
Width
14 mm
For Use With
ATSTK600-TQFP64 - STK600 SOCKET/ADAPTER 64-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAG770-1005 - ISP 4PORT FOR ATMEL AVR MCU JTAG770-1004 - ISP 4PORT FOR ATMEL AVR MCU SPIATAVRISP2 - PROGRAMMER AVR IN SYSTEM
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA645V-8AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA645V-8AUR
Manufacturer:
Atmel
Quantity:
10 000
16.11.8
16.11.9
2570M–AVR–04/11
TIMSK1 – Timer/Counter1 Interrupt Mask Register
TIFR1 – Timer/Counter1 Interrupt Flag Register
The Input Capture is updated with the counter (TCNT1) value each time an event occurs on the
ICP1 pin (or optionally on the Analog Comparator output for Timer/Counter1). The Input Capture
can be used for defining the counter TOP value.
The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes are read
simultaneously when the CPU accesses these registers, the access is performed using an 8-bit
temporary High Byte Register (TEMP). This temporary register is shared by all the other 16-bit
registers.
• Bit 5 – ICIE1: Timer/Counter1, Input Capture Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Input Capture interrupt is enabled. The corresponding Interrupt
Vector
• Bit 2 – OCIE1B: Timer/Counter1, Output Compare B Match Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare B Match interrupt is enabled. The corresponding
Interrupt Vector
TIFR1, is set.
• Bit 1 – OCIE1A: Timer/Counter1, Output Compare A Match Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare A Match interrupt is enabled. The corresponding
Interrupt Vector
TIFR1, is set.
• Bit 0 – TOIE1: Timer/Counter1, Overflow Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Overflow interrupt is enabled. The corresponding Interrupt Vector
(See “Interrupts” on page
• Bit 5 – ICF1: Timer/Counter1, Input Capture Flag
This flag is set when a capture event occurs on the ICP1 pin. When the Input Capture Register
(ICR1) is set by the WGM13:0 to be used as the TOP value, the ICF1 Flag is set when the coun-
ter reaches the TOP value.
ICF1 is automatically cleared when the Input Capture Interrupt Vector is executed. Alternatively,
ICF1 can be cleared by writing a logic one to its bit location.
Bit
(0x6F)
Read/Write
Initial Value
Bit
0x16 (0x36)
Read/Write
Initial Value
(See “Interrupts” on page
See “Accessing 16-bit Registers” on page 104.
R
R
7
0
7
0
(See “Interrupts” on page
(See “Interrupts” on page
R
R
6
0
6
0
49.) is executed when the TOV1 Flag, located in TIFR1, is set.
ICIE1
ICF1
R/W
R/W
5
0
5
0
49.) is executed when the ICF1 Flag, located in TIFR1, is set.
R
4
R
0
4
0
49.) is executed when the OCF1B Flag, located in
49.) is executed when the OCF1A Flag, located in
ATmega325/3250/645/6450
R
R
3
0
3
0
OCIE1B
OCF1B
R/W
R/W
2
0
2
0
OCIE1A
OCF1A
R/W
R/W
1
0
1
0
TOIE1
TOV1
R/W
R/W
0
0
0
0
TIMSK1
TIFR1
128

Related parts for ATMEGA645V-8AU