ATMEGA32U2-AU Atmel, ATMEGA32U2-AU Datasheet - Page 151

IC MCU 8BIT 32KB FLASH 32TQFP

ATMEGA32U2-AU

Manufacturer Part Number
ATMEGA32U2-AU
Description
IC MCU 8BIT 32KB FLASH 32TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA32U2-AU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
SPI, UART/USART, USB
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
22
Program Memory Size
32KB (16K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
32-TQFP, 32-VQFP
Processor Series
ATMEGA32x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
1 KB
Interface Type
SPI, UART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
22
Number Of Timers
2
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT, AT90USBKEY, ATEVK525
Minimum Operating Temperature
- 40 C
Controller Family/series
AVR MEGA
No. Of I/o's
22
Eeprom Memory Size
1KB
Ram Memory Size
1KB
Cpu Speed
16MHz
Rohs Compliant
Yes
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Data Converters
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA32U2-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA32U2-AUR
Manufacturer:
Atmel
Quantity:
10 000
Table 18-1.
18.3.2
7799D–AVR–11/10
Operating Mode
Asynchronous Normal mode
(U2Xn = 0)
Asynchronous Double Speed
mode (U2Xn = 1)
Synchronous Master mode
Double Speed Operation (U2Xn)
Equations for Calculating Baud Rate Register Setting
Table 18-1
ing the UBRRn value for each mode of operation using an internally generated clock source.
Note:
Some examples of UBRRn values for some system clock frequencies are found in
page
The transfer rate can be doubled by setting the U2Xn bit in UCSRnA. Setting this bit only has
effect for the asynchronous operation. Set this bit to zero when using synchronous operation.
Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling
the transfer rate for asynchronous communication. Note however that the Receiver will in this
case only use half the number of samples (reduced from 16 to 8) for data sampling and clock
recovery, and therefore a more accurate baud rate setting and system clock are required when
this mode is used. For the Transmitter, there are no downsides.
172.
BAUD
f
UBRRn
OSC
1. The baud rate is defined to be the transfer rate in bit per second (bps)
contains equations for calculating the baud rate (in bits per second) and for calculat-
Equation for Calculating Baud Rate
BAUD
BAUD
BAUD
Baud rate (in bits per second, bps)
System Oscillator clock frequency
Contents of the UBRRHn and UBRRLn Registers, (0-4095)
=
=
=
----------------------------------------- -
16 UBRRn
-------------------------------------- -
8 UBRRn
-------------------------------------- -
2 UBRRn
(
(
(
f
f
f
OSC
OSC
OSC
+
+
+
1
1
1
)
)
)
(1)
ATmega8U2/16U2/32U2
Equation for Calculating UBRR Value
UBRRn
UBRRn
UBRRn
=
=
=
----------------------- - 1
16BAUD
------------------- - 1
8BAUD
------------------- - 1
2BAUD
f
f
f
OSC
OSC
OSC
Table 18-9 on
151

Related parts for ATMEGA32U2-AU