TOP266KG Power Integrations, TOP266KG Datasheet - Page 7

no-image

TOP266KG

Manufacturer Part Number
TOP266KG
Description
IC OFFLINE SWITCHER 39W 58W
Manufacturer
Power Integrations
Series
TOPSwitch®-JXr
Datasheet

Specifications of TOP266KG

Output Isolation
Isolated
Frequency Range
66 ~ 132kHz
Voltage - Output
725V
Power (watts)
39W
Operating Temperature
-40°C ~ 125°C
Package / Case
12-BSOP (0.350", 8.89mm Width) Exposed Pad
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Other names
596-1399

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
TOP266KG
Manufacturer:
POWER
Quantity:
15 000
Part Number:
TOP266KG
Manufacturer:
POWER
Quantity:
20 000
Company:
Part Number:
TOP266KG
Quantity:
10 000
Part Number:
TOP266KG-TL
Manufacturer:
INFINEON
Quantity:
2 210
Part Number:
TOP266KG-TL
Manufacturer:
POWER
Quantity:
20 000
Part Number:
TOP266KG-TL
0
Company:
Part Number:
TOP266KG-TL
Quantity:
2 000
Figure 8.
UV prevents auto-restart attempts after the output goes out of
regulation. This eliminates power down glitches caused by slow
discharge of the large input storage capacitor present in
applications such as standby supplies. A single resistor
connected from the VOLTAGE-MONITOR pin to the rectified DC
high-voltage bus sets UV threshold during power up. Once the
power supply is successfully turned on, the UV threshold is
lowered to 44% of the initial UV threshold to allow extended
input voltage operating range (UV low threshold). If the UV low
threshold is reached during operation without the power supply
losing regulation, the device will turn off and stay off until UV
(high threshold) has been reached again. If the power supply
loses regulation before reaching the UV low threshold, the
device will enter auto-restart. At the end of each auto-restart
cycle (S15), the UV comparator is enabled. If the UV high
threshold is not exceeded, the MOSFET will be disabled during
the next cycle (see Figure 8). The UV feature can be disabled
independent of the OV feature.
Line Overvoltage Shutdown (OV)
The same resistor used for UV also sets an overvoltage
threshold, which, once exceeded, will force TOP264-271 to
stop switching instantaneously (after completion of the current
switching cycle). If this condition lasts for at least 100 ms, the
TOP264-271 output will be forced into off state. When the line
voltage is back to normal with a small amount of hysteresis
provided on the OV threshold to prevent noise triggering, the
state machine sets to S13 and forces TOP264-271 to go
through the entire auto-restart sequence before attempting to
switch again. The ratio of OV and UV thresholds is preset at
4.5, as can be seen in Figure 9. When the MOSFET is off, the
rectified DC high-voltage surge capability is increased to the
voltage rating of the MOSFET (725 V), due to the absence of the
reflected voltage and leakage spikes on the drain. The OV
feature can be disabled independent of the UV feature.
www.powerint.com
V
V
V
Note: S0 through S15 are the output states of the auto-restart counter
C
LINE
0 V
0 V
DRAIN
0 V
V
0 V
OUT
Typical Waveforms for (1) Power Up (2) Normal Operation (3) Auto-Restart (4) Power Down.
V
UV
1
S15
S14
2
S13 S12
S0
S15
3
S14
S13 S12
In order to reduce the no-load input power of TOP264-271
designs, the V pin operates at very low currents. This requires
careful layout considerations when designing the PCB to avoid
noise coupling. Traces and components connected to the V pin
should not be adjacent to any traces carrying switching currents.
These include the drain, clamp network, bias winding return or
power traces from other converters. If the line sensing features
are used, then the sense resistors must be placed within 10 mm
of the V pin to minimize the V pin node area. The DC bus
should then be routed to the line sense resistors. Note that
external capacitance must not be connected to the V pin as this
may cause misoperation of the V pin related functions.
Hysteretic or Latching Output Overvoltage Protection (OVP)
The detection of the hysteretic or latching output overvoltage
protection (OVP) is through the trigger of the line overvoltage
threshold. The V pin voltage will drop by 0.5 V, and the
controller measures the external attached impedance immediately
after this voltage drops. If I
longer than 100 ms, TOP264-271 will latch into a permanent off
state for the latching OVP. It only can be reset if I
= -27 mA (typ) or V
(V
exceeds no longer than 100 ms, TOP264-271 will initiate the line
overvoltage and the hysteretic OVP. Their behavior will be
identical to the line overvoltage shutdown (OV) that has been
described in detail in the previous section. During a fault
condition resulting from loss of feedback, output voltage will
rapidly rise above the nominal voltage. The increase in output
voltage will also result in an increase in the voltage at the output
of the bias winding. A voltage at the output of the bias winding
that exceeds of the sum of the voltage rating of the Zener diode
connected from the bias winding output to the V pin and V pin
voltage, will cause a current in excess of I
the V pin, which will trigger the OVP feature.
S0
C(RESET)
S15
) and then back to normal. If I
2
S14
C
goes below the power-up-reset threshold
S13
V
exceeds I
S12
4
TOP264-271
S0
V
OV(LS)
does not exceed I
S15
V
(336 mA typical)
to be injected into
S15
X
exceeds I
4.8 V
PI-4531-121206
5.8 V
Rev. C 11/10
OV(LS)
7
X(TH)
or

Related parts for TOP266KG