PIC18F8620-E/PT Microchip Technology, PIC18F8620-E/PT Datasheet - Page 164

no-image

PIC18F8620-E/PT

Manufacturer Part Number
PIC18F8620-E/PT
Description
IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,TQFP,80PIN,PLASTIC
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F8620-E/PT

Rohs Compliant
YES
Core Processor
PIC
Core Size
8-Bit
Speed
25MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number Of I /o
68
Program Memory Size
64KB (32K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
3.75K x 8
Voltage - Supply (vcc/vdd)
4.2 V ~ 5.5 V
Data Converters
A/D 16x10b
Oscillator Type
External
Operating Temperature
-40°C ~ 125°C
Package / Case
80-TFQFP
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
3840 B
Interface Type
I2C, SPI, USART
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
68
Number Of Timers
2 x 8 bit
Operating Supply Voltage
4.2 V to 5.5 V
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE2000, ICE4000, DV164136, DM183022, DM183032
Minimum Operating Temperature
- 40 C
On-chip Adc
16 bit
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT80PT3 - SOCKET TRAN ICE 80MQFP/TQFPAC164320 - MODULE SKT MPLAB PM3 80TQFPAC174011 - MODULE SKT PROMATEII 80TQFP
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F8620-E/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
PIC18F6520/8520/6620/8620/6720/8720
17.3.5
The master can initiate the data transfer at any time
because it controls the SCK. The master determines
when the slave (Processor 2, Figure 17-2) is to
broadcast data by the software protocol.
In Master mode, the data is transmitted/received as
soon as the SSPBUF register is written to. If the SPI is
only going to receive, the SDO output could be dis-
abled (programmed as an input). The SSPSR register
will continue to shift in the signal present on the SDI pin
at the programmed clock rate. As each byte is
received, it will be loaded into the SSPBUF register as
if a normal received byte (interrupts and status bits
appropriately set). This could be useful in receiver
applications as a “Line Activity Monitor” mode.
The clock polarity is selected by appropriately program-
ming the CKP bit (SSPCON1<4>). This then, would
give waveforms for SPI communication, as shown in
FIGURE 17-3:
DS39609B-page 162
Write to
SSPBUF
SCK
(CKP = 0
CKE = 0)
SCK
(CKP = 1
CKE = 0)
SCK
(CKP = 0
CKE = 1)
SCK
(CKP = 1
CKE = 1)
SDO
(CKE = 0)
SDO
(CKE = 1)
SDI
(SMP = 0)
Input
Sample
(SMP = 0)
SDI
(SMP = 1)
Input
Sample
(SMP = 1)
SSPIF
SSPSR to
SSPBUF
MASTER MODE
SPI MODE WAVEFORM (MASTER MODE)
bit 7
bit 7
bit 7
bit 7
bit 6
bit 6
bit 5
bit 5
bit 4
bit 4
Figure 17-3, Figure 17-5 and Figure 17-6, where the
MSB is transmitted first. In Master mode, the SPI clock
rate (bit rate) is user-programmable to be one of the
following:
• F
• F
• F
• Timer2 output/2
This allows a maximum data rate (at 40 MHz) of
10.00 Mbps.
Figure 17-3 shows the waveforms for Master mode.
When the CKE bit is set, the SDO data is valid before
there is a clock edge on SCK. The change of the input
sample is shown based on the state of the SMP bit. The
time when the SSPBUF is loaded with the received
data is shown.
bit 3
bit 3
OSC
OSC
OSC
/4 (or T
/16 (or 4 • T
/64 (or 16 • T
bit 2
bit 2
CY
)
CY
bit 1
bit 1
CY
)
)
 2004 Microchip Technology Inc.
bit 0
bit 0
bit 0
bit 0
Next Q4 cycle
after Q2
4 Clock
Modes

Related parts for PIC18F8620-E/PT