ATmega162 Atmel Corporation, ATmega162 Datasheet - Page 200

no-image

ATmega162

Manufacturer Part Number
ATmega162
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega162

Flash (kbytes)
16 Kbytes
Pin Count
44
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
35
Ext Interrupts
3
Usb Speed
No
Usb Interface
No
Spi
1
Uart
2
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
1
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
4
Output Compare Channels
6
Input Capture Channels
2
Pwm Channels
6
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega162-16AI
Manufacturer:
MIT
Quantity:
170
Part Number:
ATmega162-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega162-16AI
Manufacturer:
ATMEL
Quantity:
1 000
Part Number:
ATmega162-16AI
Manufacturer:
ATMEL
Quantity:
20 000
Part Number:
ATmega162-16AJ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega162-16AU
Manufacturer:
AVX
Quantity:
600 000
Part Number:
ATmega162-16AU
Manufacturer:
ATMEL
Quantity:
1 600
Part Number:
ATmega162-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega162-16AU
Manufacturer:
ATMEL
Quantity:
20 000
Part Number:
ATmega162-16AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega162-16MU
Manufacturer:
QFN
Quantity:
20 000
Part Number:
ATmega16216AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega162V-8PU
Manufacturer:
IDT
Quantity:
74
TAP Controller
Using the
Boundary-scan
Chain
200
ATmega162/V
The TAP controller is a 16-state finite state machine that controls the operation of the Boundary-
scan circuitry, JTAG programming circuitry, or On-chip Debug system. The state transitions
depicted in
sition) at the time of the rising edge at TCK. The initial state after a Power-on Reset is Test-
Logic-Reset.
As a definition in this document, the LSB is shifted in and out first for all Shift Registers.
Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG interface is:
As shown in the state diagram, the Run-Test/Idle state need not be entered between selecting
JTAG instruction and using Data Registers, and some JTAG instructions may select certain
functions to be performed in the Run-Test/Idle, making it unsuitable as an Idle state.
Note:
For detailed information on the JTAG specification, refer to the literature listed in
on page
A complete description of the Boundary-scan capabilities are given in the section
(JTAG) Boundary-scan” on page
At the TMS input, apply the sequence 1, 1, 0, 0 at the rising edges of TCK to enter the Shift
Instruction Register – Shift-IR state. While in this state, shift the four bits of the JTAG
instructions into the JTAG Instruction Register from the TDI input at the rising edge of TCK.
The TMS input must be held low during input of the 3 LSBs in order to remain in the Shift-IR
state. The MSB of the instruction is shifted in when this state is left by setting TMS high.
While the instruction is shifted in from the TDI pin, the captured IR-state 0x01 is shifted out
on the TDO pin. The JTAG Instruction selects a particular Data Register as path between
TDI and TDO and controls the circuitry surrounding the selected Data Register.
Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction is
latched onto the parallel output from the Shift Register path in the Update-IR state. The Exit-
IR, Pause-IR, and Exit2-IR states are only used for navigating the state machine.
At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the Shift
Data Register – Shift-DR state. While in this state, upload the selected data register
(selected by the present JTAG instruction in the JTAG Instruction Register) from the TDI
input at the rising edge of TCK. In order to remain in the Shift-DR state, the TMS input must
be held low during input of all bits except the MSB. The MSB of the data is shifted in when
this state is left by setting TMS high. While the Data Register is shifted in from the TDI pin,
the parallel inputs to the Data Register captured in the Capture-DR state is shifted out on the
TDO pin.
Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected data
register has a latched parallel-output, the latching takes place in the Update-DR state. The
Exit-DR, Pause-DR, and Exit2-DR states are only used for navigating the state machine.
Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can always be
entered by holding TMS high for five TCK clock periods.
203.
Figure 84
depend on the signal present on TMS (shown adjacent to each state tran-
204.
“Bibliography”
2513K–AVR–07/09
“IEEE 1149.1

Related parts for ATmega162