AD5601 Analog Devices, AD5601 Datasheet - Page 14

no-image

AD5601

Manufacturer Part Number
AD5601
Description
2.7 V to 5.5 V,
Manufacturer
Analog Devices
Datasheet

Specifications of AD5601

Resolution (bits)
8bit
Dac Update Rate
1.7MSPS
Dac Settling Time
6µs
Max Pos Supply (v)
+5.5V
Single-supply
Yes
Dac Type
Voltage Out
Dac Input Format
Ser,SPI

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AD5601BKSZ-500RL7
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD5601BKSZ-REEL7
Manufacturer:
STM
Quantity:
2 853
Part Number:
AD5601BKSZ-REEL7
Manufacturer:
ADI/亚德诺
Quantity:
20 000
AD5601/AD5611/AD5621
THEORY OF OPERATION
DAC SECTION
The AD5601/AD5611/AD5621 DACs are fabricated on a
CMOS process. The architecture consists of a string DAC
followed by an output buffer amplifier. Figure 39 is a block
diagram of the DAC architecture.
Because the input coding to the DAC is straight binary, the ideal
output voltage is given by
where:
D is the decimal equivalent of the binary code that is loaded to
the DAC register.
n is the bit resolution of the DAC.
RESISTOR STRING
The resistor string structure is shown in Figure 40. It is simply a
string of resistors, each of Value R. The code loaded to the DAC
register determines at which node on the string the voltage is
tapped off to be fed into the output amplifier. The voltage is
tapped off by closing one of the switches connecting the string
to the amplifier. Because it is a string of resistors, it is guaran-
teed monotonic.
DAC REGISTER
V
OUT
=
V
DD
R
R
R
R
R
Figure 40. Resistor String Structure
×
Figure 39. DAC Architecture
2
D
n
RESISTOR
NETWORK
REF (+)
REF (–)
GND
V
DD
TO OUTPUT
AMPLIFIER
OUTPUT
AMPLIFIER
V
Rev. F | Page 14 of 24
OUT
OUTPUT AMPLIFIER
The output buffer amplifier is capable of generating rail-to-rail
voltages on its output, giving an output range of 0 V to V
capable of driving a load of 2 kΩ in parallel with 1000 pF to
GND. The source and sink capabilities of the output amplifier
are shown in Figure 25. The slew rate is 0.5 V/µs, with a half-
scale settling time of 8 µs with the output loaded.
SERIAL INTERFACE
The AD5601/AD5611/AD5621 have a 3-wire serial interface
( SYNC , SCLK, and SDIN) that is compatible with SPI, QSPI,
and MICROWIRE interface standards as well as most DSPs. See
Figure 2 for a timing diagram of a typical write sequence.
The write sequence begins by bringing the SYNC line low. Data
from the SDIN line is clocked into the 16-bit shift register on
the falling edge of SCLK. The serial clock frequency can be as
high as 30 MHz, making the AD5601/AD5611/AD5621 com-
patible with high speed DSPs. On the 16
the last data bit is clocked in and the programmed function is
executed (a change in DAC register contents and/or a change
in the mode of operation). At this stage, the SYNC line may be
kept low or brought high. In either case, it must be brought high
for a minimum of 33 ns before the next write sequence so that a
falling edge of SYNC can initiate the next write sequence.
Because the SYNC buffer draws more current when V
than it does when V
between write sequences for even lower power operation of the
part, as mentioned previously. However, it must be brought
high again just before the next write sequence.
INPUT SHIFT REGISTER
The input shift register is 16 bits wide (see Figure 41). The first
two bits are control bits, which control the operating mode of
the part (normal mode or any one of three power-down
modes). For a complete description of the various modes, see
the Power-Down Modes section. For the AD5621, the next
12 bits are the data bits, which are transferred to the DAC
register on the 16
the last two bits is ignored by the AD5621. See Figure 42 and
Figure 43 for the AD5611 and AD5601 input shift register map.
SYNC INTERRUPT
In a normal write sequence, the SYNC line is kept low for at
least 16 falling edges of SCLK and the DAC is updated on the
16
16
The shift register is reset and the write sequence is seen as
invalid. Neither an update of the DAC register contents nor a
change in the operating mode occurs (see Figure 44).
th
th
falling edge. However, if SYNC is brought high before the
falling edge, this acts as an interrupt to the write sequence.
th
falling edge of SCLK. The information in
IN
= 0.8 V, SYNC should be idled low
th
falling clock edge,
Data Sheet
IN
= 1.8 V
DD
. It is

Related parts for AD5601