ltc4007eufd-1-trpbf Linear Technology Corporation, ltc4007eufd-1-trpbf Datasheet - Page 16

no-image

ltc4007eufd-1-trpbf

Manufacturer Part Number
ltc4007eufd-1-trpbf
Description
4a, High Efficiency, Standalone Li-ion Battery Charger
Manufacturer
Linear Technology Corporation
Datasheet
APPLICATIO S I FOR ATIO
LTC4007
Charger Switching Power MOSFET
and Diode Selection
Two external power MOSFETs must be selected for use
with the charger: a P-channel MOSFET for the top (main)
switch and an N-channel MOSFET for the bottom (syn-
chronous) switch.
The peak-to-peak gate drive levels are set internally. This
voltage is typically 6V. Consequently, logic-level threshold
MOSFETs must be used. Pay close attention to the BV
specification for the MOSFETs as well; many of the logic
level MOSFETs are limited to 30V or less.
Selection criteria for the power MOSFETs include the “ON”
resistance R
transfer capacitance C
output current. The charger is operating in continuous
mode at moderate to high currents so the duty cycles for
the top and bottom MOSFETs are given by:
The MOSFET power dissipations at maximum output
current are given by:
Where δ∆T is the temperature dependency of R
k is a constant inversely related to the gate drive current.
Both MOSFETs have I
includes an additional term for transition losses, which are
highest at high input voltages. For V
current efficiency generally improves with larger MOS-
FETs, while for V
increase to the point that the use of a higher R
with lower C
synchronous MOSFET losses are greatest at high input
voltage or during a short circuit when the duty cycle in this
16
Main Switch Duty Cycle = V
Synchronous Switch Duty Cycle = (V
PMAIN = V
PSYNC = (V
+ k(V
RSS
DS(ON)
OUT
IN
actually provides higher efficiency. The
– V
/V
IN
IN
, total gate capacitance QG, reverse
U
)
IN
> 20V the transition losses rapidly
2
OUT
2
(I
(I
R losses while the PMAIN equation
RSS
MAX
MAX
)/V
U
, input voltage and maximum
)(C
)
IN
2
(1 + δ∆T)R
(I
RSS
OUT
MAX
)(f
/V
)
W
2
IN
OSC
(1 + δ∆T)R
IN
IN
)
DS(ON)
< 20V the high
– V
DS(ON)
OUT
DS(ON)
U
DS(ON)
)/V
device
IN
and
DSS
.
switch in nearly 100%. The term (1 + δ∆T) is generally
given for a MOSFET in the form of a normalized R
temperature curve, but δ = 0.005/°C can be used as an
approximation for low voltage MOSFETs. C
is usually specified in the MOSFET characteristics. The
constant k = 2 can be used to estimate the contributions of
the two terms in the main switch dissipation equation.
If the charger is to operate in low dropout mode or with a
high duty cycle greater than 85%, then the topside
P-channel efficiency generally improves with a larger
MOSFET. Using asymmetrical MOSFETs may achieve cost
savings or efficiency gains.
The Schottky diode D1, shown in the Typical Application
on the back page, conducts during the dead-time between
the conduction of the two power MOSFETs. This prevents
the body diode of the bottom MOSFET from turning on and
storing charge during the dead-time, which could cost as
much as 1% in efficiency. A 1A Schottky is generally a
good size for 4A regulators due to the relatively small
average current. Larger diodes can result in additional
transition losses due to their larger junction capacitance.
The diode may be omitted if the efficiency loss can be
tolerated.
Calculating IC Power Dissipation
The power dissipation of the LTC4007 is dependent upon
the gate charge of the top and bottom MOSFETs (QG1 &
QG2 respectively) The gate charge is determined from the
manufacturer’s data sheet and is dependent upon both the
gate voltage swing and the drain voltage swing of the
MOSFET. Use 6V for the gate voltage swing and V
the drain voltage swing.
Example:
PD = V
I
V
PD = 292mW
Q
DCIN
= 5mA
= 19V, f
DCIN
• (f
OSC
OSC
= 345kHz, QG1 = QG2 = 15nC,
(QG1 + QG2) + I
Q
)
RSS
= Q
DS(ON)
GD
DCIN
/∆V
4007fa
for
DS
vs

Related parts for ltc4007eufd-1-trpbf