MC9S08GT16 MOTOROLA [Motorola, Inc], MC9S08GT16 Datasheet - Page 175

no-image

MC9S08GT16

Manufacturer Part Number
MC9S08GT16
Description
Microcontrollers
Manufacturer
MOTOROLA [Motorola, Inc]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S08GT16ACBE
Manufacturer:
SHARP
Quantity:
1 200
Part Number:
MC9S08GT16ACFBE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S08GT16ACFBE
Quantity:
480
Part Number:
MC9S08GT16ACFBER
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S08GT16ACFBER
Manufacturer:
FREESCALE
Quantity:
8 000
Part Number:
MC9S08GT16ACFBER
Manufacturer:
NXP/恩智浦
Quantity:
20 000
Part Number:
MC9S08GT16AMFBE
Manufacturer:
XILINX
Quantity:
1 300
Part Number:
MC9S08GT16AMFBE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S08GT16CFB
Manufacturer:
FREESCALE
Quantity:
885
Part Number:
MC9S08GT16CFBE
Manufacturer:
FREESCALE
Quantity:
1 831
Part Number:
MC9S08GT16CFBE
Manufacturer:
FREESCALE
Quantity:
20 000
Part Number:
MC9S08GT16CFD
Manufacturer:
FREESCALE
Quantity:
20 000
Interrupts and Status Flags
inhibits setting of the status flags associated with the receiver, thus eliminating the software overhead for
handling the unimportant message characters. At the end of a message, or at the beginning of the next
message, all receivers automatically force RWU to 0 so all receivers wake up in time to look at the first
character(s) of the next message.
11.6.3.1 Idle-Line Wakeup
When WAKE = 0, the receiver is configured for idle-line wakeup. In this mode, RWU is cleared
automatically when the receiver detects a full character time of the idle-line level. The M control bit selects
8-bit or 9-bit data mode that determines how many bit times of idle are needed to constitute a full character
time (10 or 11 bit times because of the start and stop bits). The idle-line type (ILT) control bit selects one
of two ways to detect an idle line. When ILT = 0, the idle bit counter starts after the start bit so the stop bit
and any logic 1s at the end of a character count toward the full character time of idle. When ILT = 1, the
idle bit counter doesn’t start until after a stop bit time, so the idle detection is not affected by the data in
the last character of the previous message.
11.6.3.2 Address-Mark Wakeup
When WAKE = 1, the receiver is configured for address-mark wakeup. In this mode, RWU is cleared
automatically when the receiver detects a logic 1 in the most significant bit of a received character (eighth
bit in M = 0 mode and ninth bit in M = 1 mode).
11.7
Interrupts and Status Flags
The SCI system has three separate interrupt vectors to reduce the amount of software needed to isolate the
cause of the interrupt. One interrupt vector is associated with the transmitter for TDRE and TC events.
Another interrupt vector is associated with the receiver for RDRF and IDLE events, and a third vector is
used for OR, NF, FE, and PF error conditions. Each of these eight interrupt sources can be separately
masked by local interrupt enable masks. The flags can still be polled by software when the local masks are
cleared to disable generation of hardware interrupt requests.
The SCI transmitter has two status flags that optionally can generate hardware interrupt requests. Transmit
data register empty (TDRE) indicates when there is room in the transmit data buffer to write another
transmit character to SCIxD. If the transmit interrupt enable (TIE) bit is set, a hardware interrupt will be
requested whenever TDRE = 1. Transmit complete (TC) indicates that the transmitter is finished
transmitting all data, preamble, and break characters and is idle with TxD1 high. This flag is often used in
systems with modems to determine when it is safe to turn off the modem. If the transmit complete interrupt
enable (TCIE) bit is set, a hardware interrupt will be requested whenever TC = 1. Instead of hardware
interrupts, software polling may be used to monitor the TDRE and TC status flags if the corresponding TIE
or TCIE local interrupt masks are 0s.
When a program detects that the receive data register is full (RDRF = 1), it gets the data from the receive
data register by reading SCIxD. The RDRF flag is cleared by reading SCIxS1 while RDRF = 1 and then
reading SCIxD. If the SCI is configured to operate in 9-bit mode, an additional read to the SCIxC3 register
is required to clear RDRF
MC9S08GB/GT Data Sheet, Rev. 2.3
Freescale Semiconductor
175

Related parts for MC9S08GT16