ATTINY461-20MU Atmel, ATTINY461-20MU Datasheet - Page 37

IC AVR MCU 4K 20MHZ 32-QFN

ATTINY461-20MU

Manufacturer Part Number
ATTINY461-20MU
Description
IC AVR MCU 4K 20MHZ 32-QFN
Manufacturer
Atmel
Series
AVR® ATtinyr
Datasheets

Specifications of ATTINY461-20MU

Core Processor
AVR
Core Size
8-Bit
Speed
20MHz
Connectivity
USI
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
16
Program Memory Size
4KB (2K x 16)
Program Memory Type
FLASH
Eeprom Size
256 x 8
Ram Size
256 x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 11x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
32-VQFN Exposed Pad, 32-HVQFN, 32-SQFN, 32-DHVQFN
Processor Series
ATTINY4x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
256 B
Interface Type
2-Wire, SPI, USI
Maximum Clock Frequency
20 MHz
Number Of Programmable I/os
16
Number Of Timers
2
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 11 Channel
For Use With
ATSTK600-DIP40 - STK600 SOCKET/ADAPTER 40-PDIPATAVRBC100 - REF DESIGN KIT BATTERY CHARGER770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAG
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATTINY461-20MU
Manufacturer:
KODENSHI
Quantity:
991
Part Number:
ATTINY461-20MUR
Manufacturer:
ATMEL
Quantity:
5 560
7.1.2
7.1.3
7.1.4
7.2
7.3
2588E–AVR–08/10
Power Reduction Register
Minimizing Power Consumption
ADC Noise Reduction Mode
Power-Down Mode
Standby Mode
Idle mode enables the MCU to wake up from external triggered interrupts as well as internal
ones like the Timer Overflow. If wake-up from the Analog Comparator interrupt is not required,
the Analog Comparator can be powered down by setting the ACD bit in the Analog Comparator
Control and Status Register – ACSR. This will reduce power consumption in Idle mode. If the
ADC is enabled, a conversion starts automatically when this mode is entered.
When the SM1:0 bits are written to 01, the SLEEP instruction makes the MCU enter ADC Noise
Reduction mode, stopping the CPU but allowing the ADC, the external interrupts, and the
Watchdog to continue operating (if enabled). This sleep mode halts clk
while allowing the other clocks to run.
This mode improves the noise environment for the ADC, enabling higher resolution measure-
ments. If the ADC is enabled, a conversion starts automatically when this mode is entered. Apart
form the ADC Conversion Complete interrupt, only an External Reset, a Watchdog Reset, a
Brown-out Reset, an SPM/EEPROM ready interrupt, an external level interrupt on INT0 or a pin
change interrupt can wake up the MCU from ADC Noise Reduction mode.
When the SM1:0 bits are written to 10, the SLEEP instruction makes the MCU enter Power-
down mode. In this mode, the Oscillator is stopped, while the external interrupts, and the Watch-
dog continue operating (if enabled). Only an External Reset, a Watchdog Reset, a Brown-out
Reset, an external level interrupt on INT0, or a pin change interrupt can wake up the MCU. This
sleep mode halts all generated clocks, allowing operation of asynchronous modules, only.
When the SM1:0 bits are written to 11 and an external crystal/resonator clock option is selected,
the SLEEP instruction makes the MCU enter Standby mode. This mode is identical to Power-
down with the exception that the Oscillator is kept running. From Standby mode, the device
wakes up in six clock cycles.
The Power Reduction Register (PRR), see
vides a method to stop the clock to individual peripherals to reduce power consumption. The
current state of the peripheral is frozen and the I/O registers can not be read or written.
Resources used by the peripheral when stopping the clock will remain occupied, hence the
peripheral should in most cases be disabled before stopping the clock. Waking up a module,
which is done by clearing the bit in PRR, puts the module in the same state as before shutdown.
Module shutdown can be used in Idle mode and Active mode to significantly reduce the overall
power consumption. In all other sleep modes, the clock is already stopped. See
of I/O modules” on page 197
stopped.
There are several issues to consider when trying to minimize the power consumption in an AVR
controlled system. In general, sleep modes should be used as much as possible, and the sleep
mode should be selected so that as few as possible of the device’s functions are operating. All
functions not needed should be disabled. In particular, the following modules may need special
consideration when trying to achieve the lowest possible power consumption.
for examples. In all other sleep modes, the clock is already
“PRR – Power Reduction Register” on page
I/O
, clk
CPU
“Supply Current
, and clk
39, pro-
FLASH
37
,

Related parts for ATTINY461-20MU