PIC18F4455-I/PT Microchip Technology, PIC18F4455-I/PT Datasheet - Page 8

IC PIC MCU FLASH 12KX16 44TQFP

PIC18F4455-I/PT

Manufacturer Part Number
PIC18F4455-I/PT
Description
IC PIC MCU FLASH 12KX16 44TQFP
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F4455-I/PT

Program Memory Type
FLASH
Program Memory Size
24KB (12K x 16)
Package / Case
44-TQFP, 44-VQFP
Core Processor
PIC
Core Size
8-Bit
Speed
48MHz
Connectivity
I²C, SPI, UART/USART, USB
Peripherals
Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number Of I /o
35
Eeprom Size
256 x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
4.2 V ~ 5.5 V
Data Converters
A/D 13x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
24 KB
Interface Type
SPI, I2C, EAUSART
Maximum Clock Frequency
8 MHz
Number Of Programmable I/os
35
Number Of Timers
4
Operating Supply Voltage
2 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE2000, ICE4000, DV164136, DM163025
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit
Package
44TQFP
Device Core
PIC
Family Name
PIC18
Maximum Speed
48 MHz
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT44PT3 - SOCKET TRAN ICE 44MQFP/TQFPI3-DB18F4550 - BOARD DAUGHTER ICEPIC3DM163025 - PIC DEM FULL SPEED USB DEMO BRDAC164305 - MODULE SKT FOR PM3 44TQFP444-1001 - DEMO BOARD FOR PICMICRO MCUAC164020 - MODULE SKT PROMATEII 44TQFP
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F4455-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC18F4455-I/PT
Manufacturer:
MICROCH
Quantity:
20 000
PIC18F2455/2550/4455/4550
17. Module: MSSP
18. Module: MSSP
EXAMPLE 5:
DS80220J-page 8
It has been observed that following a Power-on
Reset, I
configuring the SCL and SDA pins as either inputs
or outputs. This has only been seen in a few
unique system environments.
A test of a statistically significant sample of pre-
production systems, across the voltage and
current range of the application's power supply,
should indicate if a system is susceptible to this
issue.
Work around
Before configuring the module for I
1. Configure the SCL and SDA pins as outputs by
2. Force SCL and SDA low by clearing the
3. While keeping the LAT bits clear, configure
Once this is done, use the SSPCON1 and
SSPCON2 registers to configure the proper I
mode as before.
Date Codes that pertain to this issue:
All engineering and production devices.
When the MSSP is configured for SPI mode, the
Buffer Full bit, BF (SSPSTAT<0>), should not be
polled in software to determine when the transfer
is complete.
Work around
Copy the SSPSTAT register into a variable and
perform the bit test on the variable. In Example 5,
SSPSTAT is copied into the working register
where the bit test is performed.
A second option is to poll the Master Synchronous
Serial Port Interrupt Flag bit, SSPIF (PIR1<3>).
This bit can be polled and will set when the transfer
is complete.
Date Codes that pertain to this issue:
All engineering and production devices.
loop_MSB:
clearing their corresponding TRIS bits.
corresponding LAT bits.
SCL and SDA as inputs by setting their TRIS
bits.
MOVF
BTFSS
BRA
2
C mode may not initialize properly by just
SSPSTAT, W
WREG, BF
loop_MSB
2
C operation:
2
C
19. Module: EUSART
In rare situations, one or more extra zero bytes
have been observed in a packet transmitted by the
module operating in Asynchronous mode. The
actual data is not lost or corrupted; only unwanted
(extra) zero bytes are observed in the packet.
This situation has only been observed when the
contents of the transmit buffer, TXREG, are trans-
ferred to the TSR during the transmission of a Stop
bit. For this to occur, three things must happen in
the same instruction cycle:
• TXREG is written to;
• the baud rate counter overflows (at the end of
• a Stop bit is being transmitted (shifted out of
Work around
If possible, do not use the module’s double-buffer
capability. Instead, load the TXREG register when
the TRMT bit (TXSTA<1>) is set, indicating the
TSR is empty.
If double-buffering is used and back-to-back
transmission is performed, then load TXREG
immediately after TXIF is set, or wait 1-bit time
after TXIF is set. Both solutions prevent writing
TXREG while a Stop bit is transmitted. Note that
TXIF is set at the beginning of the Stop bit
transmission.
If transmission is intermittent, then do the
following:
Date Codes that pertain to this issue:
All engineering and production devices.
the bit period); and
TSR).
• Wait for the TRMT bit to be set before
• Alternatively, use a free timer resource to
loading TXREG.
time the baud period. Set up the timer to
overflow at the end of Stop bit, then start the
timer when you load the TXREG. Do not
load the TXREG when timer is about to
overflow.
© 2008 Microchip Technology Inc.

Related parts for PIC18F4455-I/PT