ATMEGA32-16MU Atmel, ATMEGA32-16MU Datasheet - Page 19

IC AVR MCU 32K 16MHZ 5V 44-QFN

ATMEGA32-16MU

Manufacturer Part Number
ATMEGA32-16MU
Description
IC AVR MCU 32K 16MHZ 5V 44-QFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA32-16MU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
32
Program Memory Size
32KB (16K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
44-VQFN Exposed Pad
Processor Series
ATMEGA32x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
2 KB
Interface Type
2-Wire/SPI/USART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
32
Number Of Timers
3
Operating Supply Voltage
4.5 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
8-ch x 10-bit
Controller Family/series
AVR MEGA
No. Of I/o's
32
Eeprom Memory Size
1KB
Ram Memory Size
2KB
Cpu Speed
16MHz
Rohs Compliant
Yes
For Use With
ATSTK524 - KIT STARTER ATMEGA32M1/MEGA32C1ATSTK600-TQFP32 - STK600 SOCKET/ADAPTER 32-TQFPATSTK600-TQFP44 - STK600 SOCKET/ADAPTER 44-TQFPATSTK600 - DEV KIT FOR AVR/AVR32770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATAVRDRAGON - KIT DRAGON 32KB FLASH MEM AVRATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEMATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
The EEPROM Address
Register – EEARH and
EEARL
The EEPROM Data
Register – EEDR
The EEPROM Control
Register – EECR
2503Q–AVR–02/11
• Bits 15..10 – Reserved Bits
These bits are reserved bits in the ATmega32 and will always read as zero.
• Bits 9..0 – EEAR9..0: EEPROM Address
The EEPROM Address Registers
1024 bytes EEPROM space. The EEPROM data bytes are addressed linearly between 0 and
1023. The initial value of EEAR is undefined. A proper value must be written before the
EEPROM may be accessed.
• Bits 7..0 – EEDR7.0: EEPROM Data
For the EEPROM write operation, the EEDR Register contains the data to be written to the
EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the
EEDR contains the data read out from the EEPROM at the address given by EEAR.
• Bits 7..4 – Reserved Bits
These bits are reserved bits in the ATmega32 and will always read as zero.
• Bit 3 – EERIE: EEPROM Ready Interrupt Enable
Writing EERIE to one enables the EEPROM Ready Interrupt if the I bit in SREG is set. Writing
EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a constant inter-
rupt when EEWE is cleared.
• Bit 2 – EEMWE: EEPROM Master Write Enable
The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be written.
When EEMWE is set, setting EEWE within four clock cycles will write data to the EEPROM at
the selected address If EEMWE is zero, setting EEWE will have no effect. When EEMWE has
been written to one by software, hardware clears the bit to zero after four clock cycles. See the
description of the EEWE bit for an EEPROM write procedure.
Bit
Read/Write
Initial Value
Bit
Read/Write
Initial Value
Bit
Read/Write
Initial Value
EEAR7
MSB
R/W
R/W
15
R
X
R
7
0
7
0
7
0
EEAR6
R/W
R/W
14
R
X
R
6
0
6
0
6
0
EEAR5
R/W
R/W
13
R
R
5
0
X
5
0
5
0
EEARH and EEARL – specify the EEPROM address in the
EEAR4
R/W
R/W
12
4
R
0
X
4
0
4
R
0
EEAR3
EERIE
R/W
R/W
R/W
11
R
X
3
0
3
0
3
0
EEMWE
EEAR2
R/W
R/W
R/W
10
R
X
2
0
2
0
2
0
EEAR9
EEAR1
EEWE
R/W
R/W
R/W
R/W
X
9
1
0
1
0
1
X
ATmega32(L)
EEAR8
EEAR0
EERE
R/W
R/W
LSB
R/W
R/W
8
0
X
X
0
0
0
0
EEARH
EEARL
EEDR
EECR
19

Related parts for ATMEGA32-16MU