ATMEGA32-16PU Atmel, ATMEGA32-16PU Datasheet - Page 119

IC AVR MCU 32K 16MHZ 5V 40DIP

ATMEGA32-16PU

Manufacturer Part Number
ATMEGA32-16PU
Description
IC AVR MCU 32K 16MHZ 5V 40DIP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA32-16PU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
32
Program Memory Size
32KB (16K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
40-DIP (0.600", 15.24mm)
Processor Series
ATMEGA32x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
2 KB
Interface Type
2-Wire/SPI/USART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
32
Number Of Timers
3
Operating Supply Voltage
4.5 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
8-ch x 10-bit
A/d Inputs
8-Channel, 10-Bit
Cpu Speed
16 MIPS
Eeprom Memory
1K Bytes
Input Output
32
Interface
2-Wire/SPI/USART
Memory Type
Flash
Number Of Bits
8
Package Type
40-pin PDIP
Programmable Memory
32K Bytes
Timers
2-8-bit, 1-16-bit
Voltage, Range
4.5-5.5 V
Data Rom Size
1024 B
Height
4.83 mm
Length
52.58 mm
Supply Voltage (max)
5.5 V
Supply Voltage (min)
4.5 V
Width
13.97 mm
Controller Family/series
AVR MEGA
No. Of I/o's
32
Eeprom Memory Size
1024Byte
Ram Memory Size
2KB
Rohs Compliant
Yes
For Use With
ATSTK524 - KIT STARTER ATMEGA32M1/MEGA32C1ATSTK600-TQFP32 - STK600 SOCKET/ADAPTER 32-TQFPATSTK600-TQFP44 - STK600 SOCKET/ADAPTER 44-TQFPATSTK600-DIP40 - STK600 SOCKET/ADAPTER 40-PDIP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATAVRDRAGON - KIT DRAGON 32KB FLASH MEM AVRATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEMATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA32-16PU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Phase Correct PWM Mode
2503G–AVR–11/04
pin is set as output. The PWM waveform is generated by setting (or clearing) the OC2
Register at the compare match between OCR2 and TCNT2, and clearing (or setting) the
OC2 Register at the timer clock cycle the counter is cleared (changes from MAX to
BOTTOM).
The PWM frequency for the output can be calculated by the following equation:
The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).
The extreme values for the OCR2 Register represent special cases when generating a
PWM waveform output in the fast PWM mode. If the OCR2 is set equal to BOTTOM, the
output will be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR2 equal
to MAX will result in a constantly high or low output (depending on the polarity of the out-
put set by the COM21:0 bits.)
A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved
by setting OC2 to toggle its logical level on each compare match (COM21:0 = 1). The
waveform generated will have a maximum frequency of f
to zero. This feature is similar to the OC2 toggle in CTC mode, except the double buffer
feature of the output compare unit is enabled in the fast PWM mode.
The phase correct PWM mode (WGM21:0 = 1) provides a high resolution phase correct
PWM waveform generation option. The phase correct PWM mode is based on a dual-
slope operation. The counter counts repeatedly from BOTTOM to MAX and then from
MAX to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC2)
is cleared on the compare match between TCNT2 and OCR2 while upcounting, and set
on the compare match while downcounting. In inverting Output Compare mode, the
operation is inverted. The dual-slope operation has lower maximum operation frequency
than single slope operation. However, due to the symmetric feature of the dual-slope
PWM modes, these modes are preferred for motor control applications.
The PWM resolution for the phase correct PWM mode is fixed to 8 bits. In phase correct
PWM mode the counter is incremented until the counter value matches MAX. When the
counter reaches MAX, it changes the count direction. The TCNT2 value will be equal to
MAX for one timer clock cycle. The timing diagram for the phase correct PWM mode is
shown on Figure 59. The TCNT2 value is in the timing diagram shown as a histogram
for illustrating the dual-slope operation. The diagram includes non-inverted and inverted
PWM outputs. The small horizontal line marks on the TCNT2 slopes represent compare
matches between OCR2 and TCNT2.
f
OCnPWM
=
----------------- -
N 256
f
clk_I/O
oc2
= f
ATmega32(L)
clk_I/O
/2 when OCR2 is set
119

Related parts for ATMEGA32-16PU