DSPIC30F4011-20E/PT Microchip Technology, DSPIC30F4011-20E/PT Datasheet - Page 141

IC DSPIC MCU/DSP 48K 44TQFP

DSPIC30F4011-20E/PT

Manufacturer Part Number
DSPIC30F4011-20E/PT
Description
IC DSPIC MCU/DSP 48K 44TQFP
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F4011-20E/PT

Program Memory Type
FLASH
Program Memory Size
48KB (16K x 24)
Package / Case
44-TQFP, 44-VQFP
Core Processor
dsPIC
Core Size
16-Bit
Speed
20 MIPS
Connectivity
CAN, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number Of I /o
30
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 9x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Data Bus Width
16 bit
Processor Series
DSPIC30F
Core
dsPIC
Maximum Clock Frequency
20 MHz
Number Of Programmable I/os
30
Data Ram Size
2 KB
Operating Supply Voltage
2.5 V to 5.5 V
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52713-733, 52714-737, 53276-922, EWDSPIC
Data Rom Size
1024 B
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE4000, DM240002, DM300018, DM330011
Minimum Operating Temperature
- 40 C
Package
44TQFP
Device Core
dsPIC
Family Name
dsPIC30
Maximum Speed
20 MHz
Interface Type
CAN/I2C/SPI/UART
On-chip Adc
9-chx10-bit
Number Of Timers
5
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT44PT3 - SOCKET TRAN ICE 44MQFP/TQFPAC30F006 - MODULE SKT FOR DSPIC30F 44TQFP
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
DSPIC30F401120EPT

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F4011-20E/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F4011-20E/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
20.1
The module contains a 16-word, dual port, read-only buf-
fer, called ADCBUF0...ADCBUFF, to buffer the A/D
results. The RAM is 10 bits wide, but is read into different
format 16-bit words. The contents of the sixteen A/D
Conversion Result Buffer registers, ADCBUF0 through
ADCBUFF, cannot be written by user software.
20.2
After the ADC module has been configured, the sample
acquisition is started by setting the SAMP bit. Various
sources, such as a programmable bit, timer time-outs
and external events, terminate acquisition and start a
conversion. When the A/D conversion is complete, the
result is loaded into ADCBUF0...ADCBUFF, and the A/D
Interrupt Flag, ADIF, and the DONE bit are set after the
number of samples specified by the SMPI<3:0> bits.
The following steps should be followed for doing an
A/D conversion:
1.
2.
3.
4.
5.
6.
7.
20.3
Several groups of control bits select the sequence in
which the A/D connects inputs to the sample/hold
channels, converts channels, writes the buffer memory
and generates interrupts. The sequence is controlled
by the sampling clocks.
The
sequence for multiple channels. If the SIMSAM bit is
‘0’, the two or four selected channels are acquired and
converted sequentially with two or four sample clocks.
If the SIMSAM bit is ‘1’, two or four selected channels
are acquired simultaneously with one sample clock.
The channels are then converted sequentially.
Obviously, if there is only 1 channel selected, the
SIMSAM bit is not applicable.
© 2010 Microchip Technology Inc.
Configure the ADC module:
- Configure analog pins, voltage reference
- Select A/D input channels
- Select A/D conversion clock
- Select A/D conversion trigger
- Turn on ADC module
Configure the A/D interrupt (if required):
- Clear ADIF bit
- Select A/D interrupt priority
Start sampling.
Wait the required acquisition time.
Trigger acquisition end, start conversion.
Wait for A/D conversion to complete by either:
- Waiting for the A/D interrupt
- Waiting for the DONE bit to get set
Read A/D result buffer, clear ADIF if required.
SIMSAM
and digital I/O
A/D Result Buffer
Conversion Operation
Selecting the Conversion
Sequence
bit
controls
the
acquire/convert
The CHPS<1:0> bits select how many channels are
sampled. This selection can vary from 1, 2 or 4 channels.
If the CHPS bits select 1 channel, the CH0 channel is
sampled at the sample clock and converted. The result is
stored in the buffer. If the CHPS bits select 2 channels,
the CH0 and CH1 channels are sampled and converted.
If the CHPS bits select 4 channels, the CH0, CH1, CH2
and CH3 channels are sampled and converted.
The SMPI<3:0> bits select the number of acquisition/
conversion sequences that would be performed before
an interrupt occurs. This can vary from 1 sample per
interrupt to 16 samples per interrupt.
The user cannot program a combination of CHPS and
SMPI bits that specifies more than 16 conversions per
interrupt, or 8 conversions per interrupt, depending
on the BUFM bit. The BUFM bit, when set, splits the
16-word results buffer (ADCBUF0 to ADCBUFF) into
two, 8-word groups. Writing to the 8-word buffers is
alternated on each interrupt event. Use of the BUFM bit
depends on how much time is available for moving data
out of the buffers after the interrupt, as determined by
the application.
If the processor can quickly unload a full buffer within
the time it takes to acquire and convert one channel,
the BUFM bit can be ‘0’ and up to 16 conversions
may be done per interrupt. The processor has one
sample-and-conversion time to move the sixteen
If the processor cannot unload the buffer within the
acquisition and conversion time, the BUFM bit should be
‘1’. For example, if SMPI<3:0> (ADCON2<5:2>) = 0111,
then eight conversions are loaded into half of the buffer,
following which an interrupt occurs. The next eight
conversions are loaded into the other half of the buffer.
The processor has the entire time between interrupts to
move the eight conversions.
The ALTS bit can be used to alternate the inputs
selected during the sampling sequence. The input
multiplexer has two sets of sample inputs: MUX A and
MUX B. If the ALTS bit is ‘0’, only the MUX A inputs are
selected for sampling. If the ALTS bit is ‘1’ and
SMPI<3:0> = 0000, on the first sample/convert
sequence, the MUX A inputs are selected, and on the
next acquire/convert sequence, the MUX B inputs are
selected.
The CSCNA bit (ADCON2<10>) allows the CH0
channel inputs to be alternately scanned across a
selected number of analog inputs for the MUX A group.
The inputs are selected by the ADCSSL register. If a
particular bit in the ADCSSL register is ‘1’, the corre-
sponding input is selected. The inputs are always
scanned from lower to higher numbered inputs, starting
after each interrupt. If the number of inputs selected is
greater than the number of samples taken per interrupt,
the higher numbered inputs are unused.
conversions.
dsPIC30F4011/4012
DS70135G-page 141

Related parts for DSPIC30F4011-20E/PT