ATMEGA1280-16AUR Atmel, ATMEGA1280-16AUR Datasheet - Page 209

MCU AVR 128K FLASH 16MHZ 100TQFP

ATMEGA1280-16AUR

Manufacturer Part Number
ATMEGA1280-16AUR
Description
MCU AVR 128K FLASH 16MHZ 100TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA1280-16AUR

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
86
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 16x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
100-TQFP, 100-VQFP
For Use With
ATSTK600-TQFP100 - STK600 SOCKET/ADAPTER 100-TQFPATSTK503 - STARTER KIT AVR EXP MODULE 100P
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA1280-16AUR
Manufacturer:
Atmel
Quantity:
10 000
21.2.4
21.3
2549M–AVR–09/10
Frame Formats
Synchronous Clock Operation
duces a two CPU clock period delay and therefore the maximum external XCKn clock frequency
is limited by the following equation:
Note that f
add some margin to avoid possible loss of data due to frequency variations.
When synchronous mode is used (UMSELn = 1), the XCKn pin will be used as either clock input
(Slave) or clock output (Master). The dependency between the clock edges and data sampling
or data change is the same. The basic principle is that data input (on RxDn) is sampled at the
opposite XCKn clock edge of the edge the data output (TxDn) is changed.
Figure 21-3. Synchronous Mode XCKn Timing.
The UCPOLn bit UCRSC selects which XCKn clock edge is used for data sampling and which is
used for data change. As
rising XCKn edge and sampled at falling XCKn edge. If UCPOLn is set, the data will be changed
at falling XCKn edge and sampled at rising XCKn edge.
A serial frame is defined to be one character of data bits with synchronization bits (start and stop
bits), and optionally a parity bit for error checking. The USART accepts all 30 combinations of
the following as valid frame formats:
A frame starts with the start bit followed by the least significant data bit. Then the next data bits,
up to a total of nine, are succeeding, ending with the most significant bit. If enabled, the parity bit
is inserted after the data bits, before the stop bits. When a complete frame is transmitted, it can
be directly followed by a new frame, or the communication line can be set to an idle (high) state.
Figure 21-4 on page 210
brackets are optional.
1 start bit.
5, 6, 7, 8, or 9 data bits.
no, even or odd parity bit.
1 or 2 stop bits.
UCPOL = 1
UCPOL = 0
osc
depends on the stability of the system clock source. It is therefore recommended to
RxD / TxD
RxD / TxD
XCK
XCK
Figure 21-3
illustrates the possible combinations of the frame formats. Bits inside
ATmega640/1280/1281/2560/2561
shows, when UCPOLn is zero the data will be changed at
f
XCK
<
f
---------- -
OSC
4
Sample
Sample
209

Related parts for ATMEGA1280-16AUR