IDT72T51546 Integrated Device Technology, IDT72T51546 Datasheet - Page 26

no-image

IDT72T51546

Manufacturer Part Number
IDT72T51546
Description
2.5v Multi-queue Flow-control Devices 32 Queues 36 Bit Wide Configuration 1,179,648 Bits And 2,359,296 Bits
Manufacturer
Integrated Device Technology
Datasheet
full status, when a queue is selected on the write port, this status is output via the
PAF flag. The PAF flag value for each queue is programmed during multi-queue
device programming (along with the number of queues, queue depths and
almost empty values). The PAF offset value, m, for a respective queue can be
programmed to be anywhere between ‘0’ and ‘D’, where ‘D’ is the total memory
depth for that queue. The PAF value of different queues within the same device
can be different values.
will switch to the new queue and provide the user with the new queue status,
on the third cycle after a new queue selection is made, on the same WCLK cycle
that data can actually be written to the new queue. That is, a new queue can
be selected on the write port via the WRADD bus, WADEN enable and a rising
edge of WCLK. On the third rising edge of WCLK following a queue selection,
the PAF flag output will show the full status of the newly selected queue. The PAF
is flag output is triple register buffered, so when a write operation occurs at the
almost full boundary causing the selected queue status to go almost full the PAF
will go LOW 3 WCLK cycles after the write. The same is true when a read occurs,
there will be a 3 WCLK cycle delay after the read operation.
occur based on a rising edge of WCLK. Internally the multi-queue device
monitors and keeps a record of the almost full status for all queues. It is possible
that the status of a PAF flag maybe changing internally even though that flag is
not the active queue flag (selected on the write port). A queue selected on the
read port may experience a change of its internal almost full flag status based
on read operations. The multi-queue flow-control device also provides a
duplicate of the PAF flag on the PAF[7:0] flag bus, this will be discussed in detail
in a later section of the data sheet.
ALMOST EMPTY FLAG
single Programmable Almost Empty flag output, PAE. The PAE flag output
provides a status of the almost empty condition for the active queue currently
selected on the read port for read operations. Internally the multi-queue flow-
control device monitors and maintains a status of the almost empty condition of
all queues within it, however only the queue that is selected for read operations
has its empty status output to the PAE flag. This dedicated flag is often referred
to as the “active queue almost empty flag”. The position of the PAE flag boundary
within a queue can be at any point within that queues depth. This location can
be user programmed via the serial port or one of the default values (8 or 128)
can be selected if the user has performed default programming.
empty status, when a queue is selected on the read port, this status is output via
the PAE flag. The PAE flag value for each queue is programmed during multi-
queue device programming (along with the number of queues, queue depths
and almost full values). The PAE offset value, n, for a respective queue can be
programmed to be anywhere between ‘0’ and ‘D’, where ‘D’ is the total memory
depth for that queue. The PAE value of different queues within the same device
can be different values.
will switch to the new queue and provide the user with the new queue status,
on the third cycle after a new queue selection is made, on the same RCLK cycle
that data actually falls through to the output register from the new queue. That
IDT72T51546/72T51556 2.5V, MULTI-QUEUE FLOW-CONTROL DEVICES
(32 QUEUES) 36 BIT WIDE CONFIGURATION 1,179,648 and 2,359,296 bits
As mentioned, every queue within a multi-queue device has its own almost
When queue switches are being made on the write port, the PAF flag output
So the PAF flag delays are:
from a write operation to PAF flag LOW is 2 WCLK + t
The delay from a read operation to PAF flag HIGH is t
Note, if t
The PAF flag is synchronous to the WCLK and all transitions of the PAF flag
See Figures 23 and 24 for Almost Full flag timing and queue switching.
As previously mentioned the multi-queue flow-control device provides a
As mentioned, every queue within a multi-queue device has its own almost
When queue switches are being made on the read port, the PAE flag output
SKEW
is violated there will be one added WCLK cycle delay.
SKEW2
WAF
+ WCLK + t
WAF
26
is, a new queue can be selected on the read port via the RDADD bus, RADEN
enable and a rising edge of RCLK. On the third rising edge of RCLK following
a queue selection, the data word from the new queue will be available at the
output register and the PAE flag output will show the empty status of the newly
selected queue. The PAE is flag output is triple register buffered, so when a read
operation occurs at the almost empty boundary causing the selected queue
status to go almost empty the PAE will go LOW 3 RCLK cycles after the read.
The same is true when a write occurs, there will be a 3 RCLK cycle delay after
the write operation.
occur based on a rising edge of RCLK. Internally the multi-queue device
monitors and keeps a record of the almost empty status for all queues. It is possible
that the status of a PAE flag maybe changing internally even though that flag is
not the active queue flag (selected on the read port). A queue selected on the
write port may experience a change of its internal almost empty flag status based
on write operations. The multi-queue flow-control device also provides a
duplicate of the PAE flag on the PAE[7:0] flag bus, this will be discussed in detail
in a later section of the data sheet.
POWER DOWN (PD)
consumption for HSTL/eHSTL configured inputs when the device is idle for a
long period of time. By entering the power down state certain inputs can be
disabled, thereby significantly reducing the power consumption of the part. All
WEN and REN signals must be disabled for a minimum of four WCLK and RCLK
cycles before activating the power down signal. The power down signal is
asynchronous and needs to be held LOW throughout the desired power down time.
During power down, the following conditions for the inputs/outputs signals are:
their current state prior to power down. Clock inputs can be continuous and free-
running during power down, but will have no affect on the part. However, it is
recommended that the clock inputs be low when the power down is active. To
exit power down state and resume normal operations, disable the power down
signal by bringing it HIGH. There must be a minimum of 1's waiting period before
read and write operations can resume. The device will continue from where it
had stopped and no form of reset is required after exiting power down state. The
power down feature does not provide any power savings when the inputs are
configured for LVTTL operation. However, it will reduce the current for I/Os that
are not tied directly to V
for the associated timing diagram.
"
"
"
"
"
"
"
"
"
"
So the PAE flag delays are:
from a read operation to PAE flag LOW is 2 RCLK + t
The delay from a write operation to PAE flag HIGH is t
Note, if t
The PAE flag is synchronous to the RCLK and all transitions of the PAE flag
See Figures 25 and 26 for Almost Empty flag timing and queue switching.
This device has a power down feature intended for reducing power
All internal counters, registers, and flags will remain unchanged and maintain
All data in Queue(s) memory are retained.
All data inputs become inactive.
All write and read pointers maintain their last value before power down.
All enables, chip selects, and clock input pins become inactive.
All data outputs become inactive and enter high-impedance state.
All flag outputs will maintain their current states before power down.
All programmable flag offsets maintain their values.
All echo clocks and enables will become inactive and enter high-
impedance state.
The serial programming and JTAG port will become inactive and enter
high-impedance state.
All setup and configuration CMOS static inputs are not affected, as these
pins are tied to a known value and do not toggle during operation.
SKEW
is violated there will be one added RCLK cycle delay.
CC
or GND. See Figure 34, Power Down Operation,
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
SKEW2
RAE
+ RCLK + t
RAE

Related parts for IDT72T51546