S9S08AW16A FREESCALE [Freescale Semiconductor, Inc], S9S08AW16A Datasheet - Page 67

no-image

S9S08AW16A

Manufacturer Part Number
S9S08AW16A
Description
HCS08 Microcontrollers
Manufacturer
FREESCALE [Freescale Semiconductor, Inc]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
S9S08AW16AE0CFT
Manufacturer:
FREESCALE
Quantity:
20 000
Part Number:
S9S08AW16AE0CLC
Manufacturer:
FREESCALE
Quantity:
20 000
Part Number:
S9S08AW16AE0CLD
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
S9S08AW16AE0CLDR
Manufacturer:
NXP/恩智浦
Quantity:
20 000
Part Number:
S9S08AW16AE0MLC
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
S9S08AW16AE0MLD
Manufacturer:
Freescal
Quantity:
12
Part Number:
S9S08AW16AE0MLD
Manufacturer:
FREESCALE
Quantity:
18 240
Part Number:
S9S08AW16AE0MLD
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
S9S08AW16AE0MLD
Manufacturer:
FREESCALE
Quantity:
18 240
stop mode and system clocks are shut down, a separate asynchronous path is used so the IRQ (if enabled)
can wake the MCU.
5.5.2.1
The IRQ pin enable (IRQPE) control bit in IRQSC must be 1 in order for the IRQ pin to act as the interrupt
request (IRQ) input. As an IRQ input, the user can choose the polarity of edges or levels detected
(IRQEDG), whether the pin detects edges-only or edges and levels (IRQMOD), and whether an event
causes an interrupt or only sets the IRQF flag which can be polled by software.
The IRQ pin, when enabled, defaults to use an internal pull device (IRQPDD = 0), the device is a pull-up
or pull-down depending on the polarity chosen. If the user desires to use an external pull-up or pull-down,
the IRQPDD can be written to a 1 to turn off the internal device.
BIH and BIL instructions may be used to detect the level on the IRQ pin when the pin is configured to act
as the IRQ input.
5.5.2.2
The IRQMOD control bit reconfigures the detection logic so it detects edge events and pin levels. In the
edge and level detection mode, the IRQF status flag becomes set when an edge is detected (when the IRQ
pin changes from the deasserted to the asserted level), but the flag is continuously set (and cannot be
cleared) as long as the IRQ pin remains at the asserted level.
5.5.3
Table 5-2
bottom of the table. The high-order byte of the address for the interrupt service routine is located at the
first address in the vector address column, and the low-order byte of the address for the interrupt service
routine is located at the next higher address.
When an interrupt condition occurs, an associated flag bit becomes set. If the associated local interrupt
enable is 1, an interrupt request is sent to the CPU. Within the CPU, if the global interrupt mask (I bit in
the CCR) is 0, the CPU will finish the current instruction, stack the PCL, PCH, X, A, and CCR CPU
registers, set the I bit, and then fetch the interrupt vector for the highest priority pending interrupt.
Processing then continues in the interrupt service routine.
Freescale Semiconductor
provides a summary of all interrupt sources. Higher-priority sources are located toward the
Interrupt Vectors, Sources, and Local Masks
IRQ Pin Configuration Options
Edge and Level Sensitivity
This pin does not contain a clamp diode to V
above V
be as low as V
all the way to V
When enabling the IRQ pin for use, the IRQF will be set, and should be
cleared prior to enabling the interrupt. When configuring the pin for falling
edge and level sensitivity in a 5V system, it is necessary to wait at least 6
cycles between clearing the flag and enabling the interrupt.
DD
. The voltage measured on the internally pulled up IRQ pin may
DD
DD
– 0.7 V. The internal gates connected to this pin are pulled
.
MC9S08AC16 Series Data Sheet, Rev. 8
NOTE
NOTE
DD
Chapter 5 Resets, Interrupts, and System Configuration
and should not be driven
67

Related parts for S9S08AW16A