MC9S08DZ60ACLH Freescale Semiconductor, MC9S08DZ60ACLH Datasheet - Page 254

IC MCU 60K FLASH 4K RAM 64-LQFP

MC9S08DZ60ACLH

Manufacturer Part Number
MC9S08DZ60ACLH
Description
IC MCU 60K FLASH 4K RAM 64-LQFP
Manufacturer
Freescale Semiconductor
Series
HCS08r
Datasheets

Specifications of MC9S08DZ60ACLH

Core Processor
HCS08
Core Size
8-Bit
Speed
40MHz
Connectivity
CAN, I²C, LIN, SCI, SPI
Peripherals
LVD, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
60KB (60K x 8)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 24x12b
Oscillator Type
External
Operating Temperature
-40°C ~ 85°C
Package / Case
64-LQFP
Processor Series
S08DZ
Core
HCS08
Data Bus Width
8 bit
Data Ram Size
4 KB
Interface Type
CAN, I2C, SCI, SPI
Number Of Programmable I/os
53
Operating Supply Voltage
5.5 V
Mounting Style
SMD/SMT
3rd Party Development Tools
EWS08
Development Tools By Supplier
DEMO9S08DZ60
On-chip Adc
12 bit, 24 channel
Package
64LQFP
For Use With
DEMO9S08DZ60 - BOARD DEMOEVB9S08DZ60 - BOARD EVAL FOR 9S08DZ60
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S08DZ60ACLH
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S08DZ60ACLH
Manufacturer:
FREESCALE
Quantity:
20 000
Chapter 12 Freescale’s Controller Area Network (S08MSCANV1)
field of the CAN frame, is received into the next available RxBG. If the MSCAN receives an invalid
message in its RxBG (wrong identifier, transmission errors, etc.) the actual contents of the buffer will be
over-written by the next message. The buffer will then not be shifted into the FIFO.
When the MSCAN module is transmitting, the MSCAN receives its own transmitted messages into the
background receive buffer, RxBG, but does not shift it into the receiver FIFO, generate a receive interrupt,
or acknowledge its own messages on the CAN bus. The exception to this rule is in loopback mode (see
Section 12.3.2, “MSCAN Control Register 1
exactly like all other incoming messages. The MSCAN receives its own transmitted messages in the event
that it loses arbitration. If arbitration is lost, the MSCAN must be prepared to become a receiver.
An overrun condition occurs when all receive message buffers in the FIFO are filled with correctly
received messages with accepted identifiers and another message is correctly received from the CAN bus
with an accepted identifier. The latter message is discarded and an error interrupt with overrun indication
is generated if enabled (see
messages while the receiver FIFO is full, but all incoming messages are discarded. As soon as a receive
buffer in the FIFO is available again, new valid messages will be accepted.
12.5.3
The MSCAN identifier acceptance registers (see
Register
ID[28:0]). Any of these bits can be marked ‘don’t care’ in the MSCAN identifier mask registers (see
Section 12.3.16, “MSCAN Identifier Mask Registers
A filter hit is indicated to the application software by a set receive buffer full flag (RXF = 1) and three bits
in the CANIDAC register (see
(CANIDAC)”). These identifier hit flags (IDHIT[2:0]) clearly identify the filter section that caused the
acceptance. They simplify the application software’s task to identify the cause of the receiver interrupt. If
more than one hit occurs (two or more filters match), the lower hit has priority.
A very flexible programmable generic identifier acceptance filter has been introduced to reduce the CPU
interrupt loading. The filter is programmable to operate in four different modes (see Bosch CAN 2.0A/B
protocol specification):
254
1.Although this mode can be used for standard identifiers, it is recommended to use the four or eight identifier acceptance
filters for standard identifiers
Two identifier acceptance filters, each to be applied to:
— The full 29 bits of the extended identifier and to the following bits of the CAN 2.0B frame:
— The 11 bits of the standard identifier plus the RTR and IDE bits of the CAN 2.0A/B messages
(CANIDAC)”) define the acceptable patterns of the standard or extended identifier (ID[10:0] or
– Remote transmission request (RTR)
– Identifier extension (IDE)
– Substitute remote request (SRR)
This mode implements two filters for a full length CAN 2.0B compliant extended identifier.
Figure 12-39
CANIDMR0–CANIDMR3) produces a filter 0 hit. Similarly, the second filter bank
(CANIDAR4–CANIDAR7, CANIDMR4–CANIDMR7) produces a filter 1 hit.
Identifier Acceptance Filter
shows how the first 32-bit filter bank (CANIDAR0–CANIDAR3,
Section 12.5.7.5, “Error
Section 12.3.11, “MSCAN Identifier Acceptance Control Register
MC9S08DZ60 Series Data Sheet, Rev. 4
(CANCTL1)”) where the MSCAN treats its own messages
Section 12.3.11, “MSCAN Identifier Acceptance Control
Interrupt”). The MSCAN remains able to transmit
(CANIDMR0–CANIDMR7)”).
Freescale Semiconductor
1
.

Related parts for MC9S08DZ60ACLH