MC9S08GB60CFU Freescale Semiconductor, MC9S08GB60CFU Datasheet - Page 223

no-image

MC9S08GB60CFU

Manufacturer Part Number
MC9S08GB60CFU
Description
IC MCU 60K FLASH 20MHZ 64-LQFP
Manufacturer
Freescale Semiconductor
Series
HCS08r
Datasheet

Specifications of MC9S08GB60CFU

Core Processor
HCS08
Core Size
8-Bit
Speed
40MHz
Connectivity
I²C, SCI, SPI
Peripherals
LVD, POR, PWM, WDT
Number Of I /o
56
Program Memory Size
60KB (60K x 8)
Program Memory Type
FLASH
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 3.6 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-LQFP
For Use With
M68DEMO908GB60E - BOARD DEMO MC9S08GB60M68EVB908GB60E - BOARD EVAL FOR MC9S08GB60
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Eeprom Size
-

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S08GB60CFU
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S08GB60CFU
Manufacturer:
MOTOROLA/摩托罗拉
Quantity:
20 000
Part Number:
MC9S08GB60CFUE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S08GB60CFUE
Manufacturer:
FREESCALE
Quantity:
1 000
Part Number:
MC9S08GB60CFUE
Manufacturer:
FREESCALE
Quantity:
20 000
Part Number:
MC9S08GB60CFUER
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
14.2.1.1 Channel Input Pins — AD1P7–AD1P0
The channel pins are used as the analog input pins of the ATD. Each pin is connected to an analog switch
which serves as the signal gate into the sample submodule.
14.2.1.2 ATD Reference Pins — V
These pins serve as the source for the high and low reference potentials for the converter. Separation from
the power supply pins accommodates the filtering necessary to achieve the accuracy of which the system
is capable.
14.2.1.3 ATD Supply Pins — V
These two pins are used to supply power and ground to the analog section of the ATD. Dedicated power
is required to isolate the sensitive analog circuitry from the normal levels of noise present on digital power
supplies.
14.3
The ATD uses a successive approximation register (SAR) architecture. The ATD contains all the necessary
elements to perform a single analog-to-digital conversion.
A write to the ATD1SC register initiates a new conversion. A write to the ATD1C register will interrupt
the current conversion but it will not initiate a new conversion. A write to the ATD1PE register will also
abort the current conversion but will not initiate a new conversion. If a conversion is already running when
a write to the ATD1SC register is made, it will be aborted and a new one will be started.
14.3.1
The ATD has a mode control unit to communicate with the sample and hold (S/H) machine and the SAR
machine when necessary to collect samples and perform conversions. The mode control unit signals the
S/H machine to begin collecting a sample and for the SAR machine to begin receiving a sample. At the
end of the sample period, the S/H machine signals the SAR machine to begin the analog-to-digital
conversion process. The conversion process is terminated when the SAR machine signals the end of
Freescale Semiconductor
Functional Description
Mode Control
V
must be at the same potential.
DDAD1
and V
AD7–AD0
DD
V
V
V
Name
V
DDAD
REFH
SSAD
REFL
must be at the same potential. Likewise, V
MC9S08GB/GT Data Sheet, Rev. 2.3
Table 14-1. Signal Properties
DDAD
High reference voltage for ATD converter
Low reference voltage for ATD converter
REFH
, V
ATD ground supply voltage
ATD power supply voltage
NOTE
SSAD
, V
Channel input pins
REFL
Function
SSAD1
and V
Functional Description
SS
223

Related parts for MC9S08GB60CFU