TR1000 RFM, TR1000 Datasheet - Page 4

ASH TR 115.2 KBPS 916.5 MHZ

TR1000

Manufacturer Part Number
TR1000
Description
ASH TR 115.2 KBPS 916.5 MHZ
Manufacturer
RFM
Series
TRr
Datasheet

Specifications of TR1000

Frequency
916.5MHz
Data Rate - Maximum
115.2kbps
Modulation Or Protocol
ASK, OOK
Applications
General Data Transfer
Sensitivity
-106dBm
Voltage - Supply
2.2 V ~ 3.7 V
Current - Receiving
3.8mA
Current - Transmitting
1.5mA
Data Interface
PCB, Surface Mount
Antenna Connector
PCB, Surface Mount
Operating Temperature
-40°C ~ 85°C
Package / Case
SM-20H
Wireless Frequency
916.5 MHz
Output Power
1.5 dBm
Operating Supply Voltage
2.5 V, 3.3 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Maximum Data Rate
115.2 Kbps
Minimum Operating Temperature
- 40 C
Modulation
OOK/ASK
Lead Free Status / RoHS Status
Lead free by exemption / RoHS compliant by exemption
Power - Output
-
Memory Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
583-1088-2

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
TR1000-LRIP
Manufacturer:
HRS
Quantity:
159
www.RFM.com
©2008 by RF Monolithics, Inc.
ASH Transceiver Theory of Operation
Introduction
RFM’s amplifier-sequenced hybrid (ASH) transceiver is specifically
designed for short-range wireless data communication
applications. The transceiver provides robust operation, very small
size, low power consumption and low implementation cost. All
critical RF functions are contained in the hybrid, simplifying and
speeding design-in. The ASH transceiver can be readily
configured to support a wide range of data rates and protocol
requirements. The transceiver features excellent suppression of
transmitter harmonics and virtually no RF emissions when
receiving, making it easy to certify to short- range (unlicensed)
radio regulations.
Amplifier-Sequenced Receiver Operation
The ASH transceiver’s unique feature set is made possible by its
system architecture. The heart of the transceiver is the amplifier-
sequenced receiver section, which provides more than 100 dB of
stable RF and detector gain without any special shielding or
decoupling provisions. Stability is achieved by distributing the total
RF gain over time. This is in contrast to a superheterodyne
receiver, which achieves stability by distributing total RF gain over
multiple frequencies.
Figure 1 shows the basic block diagram and timing cycle for an
amplifier-sequenced receiver. Note that the bias to RF amplifiers
RFA1 and RFA2 are independently controlled by a pulse
Figure 1
E-mail: info@rfm.com
Delay Line
Out
RFA1 Out
RF Input
Antenna
P1
P2
t
PW 1
t
PW2
ASH Receiver Block Diagram & Timing Cycle
SAW Filter
t
PRC
t
PRI
RFA1
P1
RF Data Pulse
Delay Line
Generator
Pulse
SAW
generator, and that the two amplifiers are coupled by a surface
acoustic wave (SAW) delay line, which has a typical delay of
0.5 µs.
An incoming RF signal is first filtered by a narrow-band SAW filter,
and is then applied to RFA1. The pulse generator turns RFA1 ON
for 0.5 µs. The amplified signal from RFA1 emerges from the SAW
delay line at the input to RFA2. RFA1 is now switched OFF and
RFA2 is switched ON for 0.55 µs, amplifying the RF signal further.
The ON time for RFA2 is usually set at 1.1 times the ON time for
RFA1, as the filtering effect of the SAW delay line stretches the
signal pulse from RFA1 somewhat. As shown in the timing
diagram, RFA1 and RFA2 are never on at the same time, assuring
excellent receiver stability. Note that the narrow-band SAW filter
eliminates sampling sideband responses outside of the receiver
passband, and the SAW filter and delay line act together to provide
very high receiver ultimate rejection.
Amplifier-sequenced receiver operation has several interesting
characteristics that can be exploited in system design. The RF
amplifiers in an amplifier-sequenced receiver can be turned on and
off almost instantly, allowing for very quick power-down (sleep)
and wake-up times. Also, both RF amplifiers can be off between
ON sequences to trade-off receiver noise figure for lower average
current consumption. The effect on noise figure can be modeled as
if RFA1 is on continuously, with an attenuator placed in front of it
with a loss equivalent to 10*log
duty factor is the average amount of time RFA1 is ON (up to 50%).
RFA2
P2
Detector &
Low-Pass
Filter
10
(RFA1 duty factor), where the
Data
Out
TR1000 - 4/4/08
Page 4 of 12

Related parts for TR1000