IRFB3806PBF International Rectifier, IRFB3806PBF Datasheet - Page 5

MOSFET N-CH 60V 43A TO-220AB

IRFB3806PBF

Manufacturer Part Number
IRFB3806PBF
Description
MOSFET N-CH 60V 43A TO-220AB
Manufacturer
International Rectifier
Series
HEXFET®r
Datasheet

Specifications of IRFB3806PBF

Fet Type
MOSFET N-Channel, Metal Oxide
Fet Feature
Standard
Rds On (max) @ Id, Vgs
15.8 mOhm @ 25A, 10V
Drain To Source Voltage (vdss)
60V
Current - Continuous Drain (id) @ 25° C
43A
Vgs(th) (max) @ Id
4V @ 50µA
Gate Charge (qg) @ Vgs
30nC @ 10V
Input Capacitance (ciss) @ Vds
1150pF @ 50V
Power - Max
71W
Mounting Type
Through Hole
Package / Case
TO-220-3 (Straight Leads)
Transistor Polarity
N Channel
Continuous Drain Current Id
43A
Drain Source Voltage Vds
60V
On Resistance Rds(on)
12.6mohm
Rds(on) Test Voltage Vgs
20V
Threshold Voltage Vgs Typ
4V
Rohs Compliant
Yes
Drain-source Breakdown Voltage
60 V
Gate-source Breakdown Voltage
20 V
Continuous Drain Current
43 A
Power Dissipation
71 W
Mounting Style
Through Hole
Gate Charge Qg
22 nC
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
IRFB3806PBF
Manufacturer:
International Rectifier
Quantity:
27 742
Part Number:
IRFB3806PBF
Manufacturer:
IR
Quantity:
20 000
Company:
Part Number:
IRFB3806PBF
Quantity:
25 780
www.irf.com
Fig 15. Maximum Avalanche Energy vs. Temperature
80
60
40
20
0
25
0.001
100
0.01
0.1
Starting T J , Junction Temperature (°C)
10
0.1
1.0E-06
10
1
1E-006
1
50
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Τ j = 25°C and
Tstart = 150°C.
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
D = 0.50
TOP
BOTTOM 1.0% Duty Cycle
I D = 25A
0.10
0.05
0.01
75
0.01
0.02
0.20
0.10
0.05
100
SINGLE PULSE
( THERMAL RESPONSE )
Single Pulse
Duty Cycle = Single Pulse
1.0E-05
1E-005
125
Fig 14. Typical Avalanche Current vs.Pulsewidth
150
175
t 1 , Rectangular Pulse Duration (sec)
1.0E-04
0.0001
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
2. Safe operation in Avalanche is allowed as long asT
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. P
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
6. I
7. ∆T
tav (sec)
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T
during avalanche).
25°C in Figure 14, 15).
t
D = Duty cycle in avalanche = t
Z
av
av =
thJC
D (ave)
τ
= Allowable avalanche current.
J
=
τ
J
Average time in avalanche.
τ
(D, t
Allowable rise in junction temperature, not to exceed T
1
Ci= τi/Ri
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆ Tj = 150°C and
Tstart =25°C (Single Pulse)
τ
1
Ci τi/Ri
= Average power dissipation per single avalanche pulse.
av
1.0E-03
) = Transient thermal resistance, see Figures 13)
R
jmax
1
R
0.001
1
. This is validated for every part type.
τ
2
R
τ
P
2
2
R
D (ave)
2
R
τ
3
= 1/2 ( 1.3·BV·I
I
E
3
R
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
av
τ
3
3
AS (AR)
= 2DT/ [1.3·BV·Z
τ
C
av
1.0E-02
τ
Ri (°C/W)
·f
0.6086
0.9926
0.5203
0.01
= P
D (ave)
av
) = DT/ Z
·t
th
0.00026
0.001228
0.00812
av
τi (sec)
]
jmax
thJC
jmax
1.0E-01
is not exceeded.
0.1
(assumed as
5

Related parts for IRFB3806PBF