PIC18LF13K22-E/SO Microchip Technology, PIC18LF13K22-E/SO Datasheet - Page 59

no-image

PIC18LF13K22-E/SO

Manufacturer Part Number
PIC18LF13K22-E/SO
Description
8KB Flash, 256bytes RAM, 256bytes EEPROM, 16MIPS, NanoWatt XLP 20 SOIC .300in TU
Manufacturer
Microchip Technology
Series
PIC® XLP™ 18Fr

Specifications of PIC18LF13K22-E/SO

Core Processor
PIC
Core Size
8-Bit
Speed
48MHz
Connectivity
I²C, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
17
Program Memory Size
8KB (4K x 16)
Program Memory Type
FLASH
Eeprom Size
256 x 8
Ram Size
256 x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 3.6 V
Data Converters
A/D 12x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Package / Case
20-SOIC (7.5mm Width)
Processor Series
PIC18LF
Core
PIC
Data Bus Width
8 bit
Data Ram Size
256 B
Interface Type
EUSART, I2C, SPI
Maximum Clock Frequency
32 KHz
Number Of Programmable I/os
18
Number Of Timers
4
Operating Supply Voltage
1.8 V to 3.6 V
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 12 Channel
A/d Bit Size
10 bit
A/d Channels Available
12
Height
2.05 mm
Length
12.8 mm
Supply Voltage (max)
3.6 V
Supply Voltage (min)
1.8 V, 2.7 V
Width
7.5 mm
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
5.0
The data EEPROM is a nonvolatile memory array, sep-
arate from the data RAM and program memory, which
is used for long-term storage of program data. It is not
directly mapped in either the register file or program
memory space but is indirectly addressed through the
Special Function Registers (SFRs). The EEPROM is
readable and writable during normal operation over the
entire V
Four SFRs are used to read and write to the data
EEPROM as well as the program memory. They are:
• EECON1
• EECON2
• EEDATA
• EEADR
The data EEPROM allows byte read and write. When
interfacing to the data memory block, EEDATA holds
the 8-bit data for read/write and the EEADR register
holds the address of the EEPROM location being
accessed.
The EEPROM data memory is rated for high erase/write
cycle endurance. A byte write automatically erases the
location and writes the new data (erase-before-write).
The write time is controlled by an on-chip timer; it will
vary with voltage and temperature as well as from chip-
to-chip. Please refer to parameter US122 (Table 25-13
in Section 25.0 “Electrical Specifications”) for exact
limits.
5.1
The EEADR register is used to address the data
EEPROM for read and write operations. The 8-bit
range of the register can address a memory range of
256 bytes (00h to FFh).
5.2
Access to the data EEPROM is controlled by two
registers: EECON1 and EECON2. These are the same
registers which control access to the program memory
and are used in a similar manner for the data
EEPROM.
 2010 Microchip Technology Inc.
DD
DATA EEPROM MEMORY
EECON1 and EECON2 Registers
EEADR Register
range.
Preliminary
PIC18F1XK22/LF1XK22
The EECON1 register (Register 5-1) is the control reg-
ister for data and program memory access. Control bit
EEPGD determines if the access will be to program or
data EEPROM memory. When the EEPGD bit is clear,
operations will access the data EEPROM memory.
When the EEPGD bit is set, program memory is
accessed.
Control bit, CFGS, determines if the access will be to
the Configuration registers or to program memory/data
EEPROM memory. When the CFGS bit is set,
subsequent operations access Configuration registers.
When the CFGS bit is clear, the EEPGD bit selects
either program Flash or data EEPROM memory.
The WREN bit, when set, will allow a write operation.
On power-up, the WREN bit is clear.
The WRERR bit is set by hardware when the WR bit is
set and cleared when the internal programming timer
expires and the write operation is complete.
The WR control bit initiates write operations. The bit
can be set but not cleared by software. It is cleared only
by hardware at the completion of the write operation.
Control bits, RD and WR, start read and erase/write
operations, respectively. These bits are set by firmware
and cleared by hardware at the completion of the
operation.
The RD bit cannot be set when accessing program
memory (EEPGD = 1). Program memory is read using
table read instructions. See Section 4.1 “Table Reads
and Table Writes” regarding table reads.
The EECON2 register is not a physical register. It is
used exclusively in the memory write and erase
sequences. Reading EECON2 will read all ‘0’s.
Note:
Note:
During normal operation, the WRERR
may read as ‘1’. This can indicate that a
write operation was prematurely termi-
nated by a Reset, or a write operation was
attempted improperly.
The EEIF interrupt flag bit of the PIR2
register is set when the write is complete.
It must be cleared by software.
DS41365D-page 59

Related parts for PIC18LF13K22-E/SO