PIC18F2510-I/ML Microchip Technology Inc., PIC18F2510-I/ML Datasheet - Page 167

no-image

PIC18F2510-I/ML

Manufacturer Part Number
PIC18F2510-I/ML
Description
Microcontroller; 32 KB Flash; 1024 RAM; 0 EEPROM; 21 I/O; 28-Pin-QFN
Manufacturer
Microchip Technology Inc.
Datasheet

Specifications of PIC18F2510-I/ML

A/d Inputs
10-Channel, 10-Bit
Comparators
2
Cpu Speed
10 MIPS
Eeprom Memory
0 Bytes
Input Output
21
Interface
I2C/SPI/USART
Memory Type
Flash
Number Of Bits
8
Package Type
28-pin QFN
Programmable Memory
32K Bytes
Ram Size
1.5K Bytes
Speed
40 MHz
Timers
1-8-bit, 3-16-bit
Voltage, Range
2-5.5 V
Lead Free Status / Rohs Status
RoHS Compliant part Electrostatic Device

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F2510-I/ML
Manufacturer:
MICORCHIP
Quantity:
662
15.4.4
Both 7-bit and 10-bit Slave modes implement
automatic clock stretching during a transmit sequence.
The SEN bit (SSPxCON2<0>) allows clock stretching
to be enabled during receives. Setting SEN will cause
the SCLx pin to be held low at the end of each data
receive sequence.
15.4.4.1
In 7-bit Slave Receive mode, on the falling edge of the
ninth clock at the end of the ACK sequence, if the BF
bit is set, the CKP bit in the SSPxCON1 register is
automatically cleared, forcing the SCLx output to be
held low. The CKP being cleared to ‘0’ will assert the
SCLx line low. The CKP bit must be set in the user’s
ISR before reception is allowed to continue. By holding
the SCLx line low, the user has time to service the ISR
and read the contents of the SSPxBUF before the
master device can initiate another receive sequence.
This will prevent buffer overruns from occurring (see
Figure 15-13).
15.4.4.2
In 10-bit Slave Receive mode during the address
sequence, clock stretching automatically takes place
but CKP is not cleared. During this time, if the UA bit is
set after the ninth clock, clock stretching is initiated.
The UA bit is set after receiving the upper byte of the
10-bit address and following the receive of the second
byte of the 10-bit address with the R/W bit cleared to
‘0’. The release of the clock line occurs upon updating
SSPxADD. Clock stretching will occur on each data
receive sequence as described in 7-bit mode.
© 2006 Microchip Technology Inc.
Note:
Note 1: If the user reads the contents of the
2: The CKP bit can be set in software
CLOCK STRETCHING
If the user polls the UA bit and clears it by
updating the SSPxADD register before the
falling edge of the ninth clock occurs and if
the user hasn’t cleared the BF bit by read-
ing the SSPxBUF register before that time,
then the CKP bit will still NOT be asserted
low. Clock stretching on the basis of the
state of the BF bit only occurs during a
data sequence, not an address sequence.
SSPxBUF before the falling edge of the
ninth clock, thus clearing the BF bit, the
CKP bit will not be cleared and clock
stretching will not occur.
regardless of the state of the BF bit. The
user should be careful to clear the BF bit
in the ISR before the next receive
sequence in order to prevent an overflow
condition.
Clock Stretching for 7-bit Slave
Receive Mode (SEN =
Clock Stretching for 10-bit Slave
Receive Mode (SEN = 1)
1
)
Preliminary
PIC18F45J10 FAMILY
15.4.4.3
The 7-bit Slave Transmit mode implements clock
stretching by clearing the CKP bit after the falling edge
of the ninth clock, if the BF bit is clear. This occurs
regardless of the state of the SEN bit.
The user’s ISR must set the CKP bit before transmis-
sion is allowed to continue. By holding the SCLx line
low, the user has time to service the ISR and load the
contents of the SSPxBUF before the master device
can
Figure 15-9).
15.4.4.4
In 10-bit Slave Transmit mode, clock stretching is con-
trolled during the first two address sequences by the
state of the UA bit, just as it is in 10-bit Slave Receive
mode. The first two addresses are followed by a third
address sequence which contains the high-order bits
of the 10-bit address and the R/W bit set to ‘1’. After
the third address sequence is performed, the UA bit is
not set, the module is now configured in Transmit
mode and clock stretching is controlled by the BF flag
as in 7-bit Slave Transmit mode (see Figure 15-11).
Note 1: If the user loads the contents of
initiate
2: The CKP bit can be set in software
SSPxBUF, setting the BF bit before the
falling edge of the ninth clock, the CKP bit
will not be cleared and clock stretching
will not occur.
regardless of the state of the BF bit.
Clock Stretching for 7-bit Slave
Transmit Mode
Clock Stretching for 10-bit Slave
Transmit Mode
another
transmit
DS39682B-page 165
sequence
(see

Related parts for PIC18F2510-I/ML