TLE6368 Infineon Technologies, TLE6368 Datasheet

no-image

TLE6368

Manufacturer Part Number
TLE6368
Description
Multi-Voltage Processor Power Supply
Manufacturer
Infineon Technologies
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
TLE6368 R
Manufacturer:
INF
Quantity:
20 000
Part Number:
TLE6368G
Manufacturer:
INFINEON/英飞凌
Quantity:
20 000
Part Number:
TLE6368G1A
Manufacturer:
INFINEON/英飞凌
Quantity:
20 000
Part Number:
TLE6368G2
Manufacturer:
INFINEON/英飞凌
Quantity:
20 000
Part Number:
TLE6368G2
0
Company:
Part Number:
TLE6368G2
Quantity:
4 800
Part Number:
TLE6368K
Manufacturer:
INFINEON
Quantity:
8 831
Part Number:
TLE6368R
Manufacturer:
INFINEON
Quantity:
3 480
Part Number:
TLE6368R
Manufacturer:
INFINEON/英飞凌
Quantity:
20 000
www.DataSheet4U.com
Multi-Voltage Processor Power Supply
Data Sheet
1
1.1
• High efficiency regulator system
• Wide input voltage range from 5.5V to 60V
• Stand-by mode with low current consumption
• Suitable for standard 12V/24V and 42V PowerNets
• Step down converter as pre-regulator:
• Step down slope control for lowest EME
• Switching loss minimization
• Three high current linear post-regulators with
• Six independent voltage trackers (followers):
• Stand-by regulator with 1mA current capability
• Three independent undervoltage detection circuits
• Power on reset functionality
• Tracker control and diagnosis by SPI
• All outputs protected against short-circuit
• Power-DSO-36 package
Type
TLE 6368 G1 / SONIC
Data Sheet, Rev. 1.32
selectable output voltages:
(e.g. reset, early warning) for each linear post-regulator
SMD = Surface Mounted Device
5V / 800mA
3.3V or 2.6V / 500mA
3.3V or 2.6V / 350mA
5.5V / 1.5A
5V / 17mA each
Overview
Features
Ordering Code
Q67007-A9648
1
Package
P-DSO-36-12
P-DSO-36-12
TLE 6368 / SONIC
2004-10-15

Related parts for TLE6368

TLE6368 Summary of contents

Page 1

Multi-Voltage Processor Power Supply Data Sheet 1 Overview 1.1 Features • High efficiency regulator system • Wide input voltage range from 5.5V to 60V • Stand-by mode with low current consumption • Suitable for standard 12V/24V and 42V PowerNets ...

Page 2

Short functional description TLE 6368 G1 / SONIC The for automotive applications using a standard 12V / 24V battery as well as the new 42V powernet. The device is intended to supply 32 bit micro-controller systems which require ...

Page 3

Pin configuration ...

Page 4

Information 1.4 Pin definitions and functions Pin No. Symbol 1,18,19, GND 36 2 CLK ERR 7 Q_STB 8 Q_T1 9 Q_T2 10 Q_T3 Data Sheet, Rev. 1.32 Function Ground; to reduce ...

Page 5

Pin definitions and functions (cont’d) Pin No. Symbol 11 Q_T4 12 Q_T5 13 Q_T6 14 Q_LDO3 CCP 23 SEL 24 Q_LDO2 25, 26 FB/L_IN Data Sheet, Rev. ...

Page 6

Pin definitions and functions (cont’d) Pin No. Symbol 27 Q_LDO1 28 Bootstrap Bootstrap Input; add the bootstrap capacitor between pin BOOST 34 WAKE 35 SLEW Data Sheet, Rev. 1.32 Function ...

Page 7

Basic block diagram 2* Figure 2 Block Diagram Data Sheet, Rev. 1.32 TLE 6368 Standby Regulator Boost IN BUCK REGULATOR Slew Driver Internal Error- Reference OSZ PWM Amplifier feedback Protection Power Wake Down Logic R1 Reset R2 Logic ...

Page 8

Detailed circuit description In the following major buck regulator blocks, the linear voltage regulators and trackers, the undervoltage reset function, the watchdog and the SPI are described in more detail. For applications information e.g. choice of external components, ...

Page 9

Current mode control scheme The regulation loop is located at the left lower corner in the schematic, there you ...

Page 10

As soon as the voltage at the SW pin passes zero volts the handover to the main switch occurs and the traditional switching behaviour of ...

Page 11

Power Sequencing V FB/L_IN V LDO_EN V Q_LDO1 5V V Rth5 3.3V 2.6V V (2.6V Mode) Q_LDO2 0.7V 2.6V V Rth2.6 V (3.3V Mode) Q_LDO3 3.3V V Rth3.3 +/- 50mV Figure 4 Power-up and -down sequencing of the regulators ...

Page 12

Voltage Trackers For off board supplies i.e. sensors six voltage trackers Q_T1 to Q_T6 with 17mA output current capability each are available. The output voltages match Q_LDO1 within +5 / -15mV. They can be individually turned on and ...

Page 13

Q_LDO1 had decreased below 3.3V (max.), the SPI will reset to the default settings including the 8ms delay time. If the voltage on Q_LDO1 during sleep or power off mode was kept above 3.3V the delay time set by ...

Page 14

CW CW definition closed window definition OSC OSCmax EOW, w.c. CW worst cases OSC OSCmin ECW, w.c. CW Minimum open window time: Figure 6 Window watchdog ...

Page 15

Perfect triggering after Power on Reset V Q_LDO1 V Rth1 1V R1 Watchdog window CS ERR Incorrect triggering Watchdog window with WD- trig Watchdog enable command with no trigger: D0D9D14D15=0100 2) Watchdog trigger: D15=1 ...

Page 16

Then three valid watchdog triggers are shown, no effect on the reset line and/or error pin is observed. With the missing watchdog trigger signal the error signal turns low immediately where the reset is ...

Page 17

The transmission cycle begins when the TLE 6368 G1 / SONIC is selected by the “not chip select” input L). After the CS input returns from the word that has been read in ...

Page 18

Write Bit meaning Function Reset timing: Reset delay time t RES Window watchdog timing: Open window time t OW closed window time t CW Window watchdog function: Enable /disable window watchdog Window watchdog trigger: Enable / disable window watchdog ...

Page 19

Read Bit meaning Function Error indication, explanation see below this table Overtemperature warning Status of Tracker Output Q_T[1:6],only if output is ON Indication of cold start/ warm start, Q_LDO1 Indication of cold start/ warm start, Q_LDO2 Indication for open ...

Page 20

SPI Timings CS High to Low & rising edge of CLK enabled. Status information is transferred to Output Shift Register CS Low to High: Data from Register are transferred to e.g. Trackers CLK ...

Page 21

Figure 11 SPI-Input Timing CLK DO (low to high) t VADO DO (high to low) Figure 12 DO Valid Data Delay Time and Valid Time Data Sheet, Rev. 1.32 t rIN t rDO t fDO 21 TLE 6368 / ...

Page 22

ENDO DO Figure 13 DO Enable and Disable Time Data Sheet, Rev. 1.32 t fIN t 22 TLE 6368 / SONIC t <10ns rIN 0.7 V Q_LDO1 50% 0.2 V Q_LDO1 10k 50% Pullup to V ...

Page 23

Characteristics 3.1 Absolute Maximum Ratings Item Parameter 3.1.1 Supply Voltage Input IN Voltage Voltage Current 3.1.2 Buck-Switch Output SW Voltage Current 3.1.3 Feedback and Linear Voltage Regulator Input Voltage Current 3.1.4 Bootstrap Connector Bootstrap Voltage Voltage Current 3.1.5 ...

Page 24

Charge Pump Capacitor Connector C+ Voltage Current 3.1.9 Charge Pump Storage Capacitor CCP Voltage Current 3.1.10 Standby Voltage Regulator output Q_STB Voltage Current 3.1.11 Voltage Regulator output voltage Q_LDO1 Voltage Current 3.1.12 Voltage Regulator output voltage Q_LDO2 Voltage ...

Page 25

Voltage Tracker output voltage Q_T5 Voltage Current 3.1.19 Voltage Tracker output voltage Q_T6 Voltage Current 3.1.20 Select Input SEL Voltage Current 3.1.21 Wake Up Input Wake Voltage Current 3.1.22 Reset Output R1 Voltage Current 3.1.23 Reset Output R2 ...

Page 26

SPI Chip Select Not Input CS Voltage Current 3.1.29 Error Output Pin Voltage Current 3.1.30 Thermal Resistance Junction- ambient Junction- ambient Junction- case 3.1.31 Temperature Junction temperature Junction temperature transient Storage temperature 3.1.32 ESD ESD 1) Package mounted ...

Page 27

Functional Range -40°C < T < 150 °C j Item Parameter Supply Voltage Supply Voltage Ripple at FB/L_IN Note: Within the functional range the IC can be operated . The electrical characteristics, however, are not guaranteed over this ...

Page 28

Recommended Operation Range -40°C < T < 150 °C j Item Parameter Buck Inductor Buck Capacitor Bootstrap Capacitor SLEW resistor Linear regulator capacitors Tracker bypass capacitors SPI rise and fall timings, CS, DI, CLK 1) C needs about ...

Page 29

Electrical Characteristics The electrical characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature range. Typical values represent the median values at room temperature, which are related to production processes. -40 < T ...

Page 30

T <150 ° Item Parameter 3.4.11 Output voltage 3.4.12 Bootstrap charging current at start-up 3.4.13 Bootstrap voltage (internal charge pump) 3.4.14 Bootstrap undervoltage lockout, Buck turn on threshold 3.4.15 Bootstrap undervoltage lockout, hysteresis 3.4.16 ...

Page 31

T <150 ° Item Parameter 3.4.21 Load Regulation 3.4.22 Current limit 3.4.23 Ripple rejection 3.4.24 Output Capacitor Voltage Regulator Q_LDO2 3.4.25 Output voltage 3.3V 3.4.26 Output voltage 3.3V 3.4.27 Output voltage 2.6V 3.4.28 Output ...

Page 32

T <150 ° Item Parameter 3.4.34 Ripple rejection 3.4.35 Output Capacitor Voltage Regulator Q_LDO3 3.4.36 Output voltage 3.3V 3.4.37 Output voltage 3.3V 3.4.38 Output voltage 2.6V 3.4.39 Output voltage 2.6V 3.4.40 Load Regulation 3.4.41 ...

Page 33

T <150 ° Item Parameter 3.4.46 Output voltage tracking accuracy 3.4.47 Output voltage tracking accuracy 3.4.48 Overvoltage threshold 3.4.49 Undervoltage threshold 3.4.50 Current limit 3.4.51 Ripple rejection 3.4.52 Tracker load capacitor Voltage Tracker Q_T2 ...

Page 34

T <150 ° Item Parameter 3.4.59 Tracker load capacitor Voltage Tracker Q_T3 3.4.60 Output voltage tracking accuracy 3.4.61 Output voltage tracking accuracy 3.4.62 Overvoltage threshold 3.4.63 Undervoltage threshold 3.4.64 Current limit 3.4.65 Ripple rejection ...

Page 35

T <150 ° Item Parameter 3.4.70 Undervoltage threshold 3.4.71 Current limit 3.4.72 Ripple rejection 3.4.73 Tracker load capacitor Voltage Tracker Q_T5 3.4.74 Output voltage tracking accuracy 3.4.75 Output voltage tracking accuracy 3.4.76 Overvoltage threshold ...

Page 36

T <150 ° Item Parameter 3.4.82 Output voltage tracking accuracy 3.4.83 Overvoltage threshold 3.4.84 Undervoltage threshold 3.4.85 Current limit 3.4.86 Ripple rejection 3.4.87 Tracker load capacitor Standby Regulator 3.4.88 Output voltage 3.4.89 Current limit ...

Page 37

T <150 ° Item Parameter 3.4.94 Turn off Wake-up threshold 3.4.95 Wake-up input current 3.4.96 Wake up input on time Reset R1 3.4.97 Reset threshold Q_LDO1 3.4.98 Reset threshold Q_LDO1 3.4.99 Reset output low ...

Page 38

T <150 ° Item Parameter 3.4.105 Reset threshold Q_LDO2 3.4.106 Reset threshold hysteresis Q_LDO2 3.4.107 Reset output low voltage 3.4.108 Reset output low voltage 3.4.109 Reset output low sink current 3.4.110 Reset High leakage ...

Page 39

T <150 ° Item Parameter 3.4.116 Reset output low voltage 3.4.117 Reset output low sink current 3.4.118 Reset High leakage current 3.4.119 Reset reaction time 3.4.120 Reset Delay Norm factor 3.4.121 Reset Delay time ...

Page 40

T <150 ° Item Parameter 3.4.127 Watchdog reset low time 3.4.128 Watchdog reset delay time Error Output ERR 3.4.129 H-output voltage level 3.4.130 L-output voltage level SPI 3.4.131 SPI clock frequency SPI Input DI ...

Page 41

T <150 ° Item Parameter 3.4.139 H-input voltage threshold 3.4.140 L-input voltage threshold 3.4.141 Hysteresis of input voltage 3.4.142 Pull down current 3.4.143 Input capacitance 3.4.144 Input signal rise time 3.4.145 Input signal fall ...

Page 42

T <150 ° Item Parameter Logic Output DO 3.4.153 H-output voltage level 3.4.154 L-output voltage level 3.4.155 Tri-state leakage current 3.4.156 Tri-state input capacitance Data Input Timing 3.4.157 Clock period 3.4.158 Clock high time ...

Page 43

T <150 ° Item Parameter 3.4.166 DO rise time 3.4.167 DO fall time 3.4.168 DO enable time 3.4.169 DO disable time 3.4.170 DO valid time General 3.4.171 Temperature warning flag 3.4.172 Over Temperature shutdown ...

Page 44

Typical charcteristics Buck converter switching frequency vs. junction temperature 420 f SW kHz 400 380 360 340 320 300 280 -50 -20 10 Buck converter output voltage at 1.5A load vs. junction temperature 6.0 V FB/L_IN V 5.9 ...

Page 45

Start-up bootstrap charging current vs. junction temperature 280 I BTSTR µA 240 200 160 120 -50 -20 10 Device start-up voltage (acc. to spec. 3.2) vs. junction temperature 6 5.5 5.0 4.5 4.0 ...

Page 46

Q_LDO1 output voltage at 800mA load vs. junction temperature 5.20 V Q_LDO1 V 5.15 5.10 5.05 5.00 4.95 4.90 4.85 -50 -20 10 Reset1 threshold at decreasing V_LDO1 vs. junction temperature V 4.80 RTH Q_LDO1 4.75 4.70 ...

Page 47

Q_LDO2 current limit (2.6V mode) vs. junction temperature 850 I Q_LDO2 V 800 750 700 650 600 550 500 -50 -20 10 Q_LDO3 output voltage at 300mA load (3.3V mode) vs. junction temperature 3.50 V Q_LDO3 V 3.45 3.40 ...

Page 48

Reset3 threshold at decreasing V_LDO3 (3.3V mode) vs. junction temperature V 3.00 RTH Q_LDO3 2.95 2.90 2.85 2.80 2.75 2.70 2.65 -50 -20 10 Tracker current limit vs. junction temperature 32 I Q_Tx ...

Page 49

Q_STB current limit vs. junction temperature 4.0 I Q_STB mA 3.5 3.0 2.5 2.0 1.5 1.0 0.5 -50 -20 10 Data Sheet, Rev. 1.32 Device current consumption in off mode vs. junction temperature I q, off µ ...

Page 50

Application Information 5.1 Application Diagram DBOOST C L BOOST I 100 µH Battery 100 nF 47 µF To IGN Q_LDO1 µC 10 ...

Page 51

Buck converter circuit A typical choice of external components for the buck converter is given in figure 14. For basic operation of the buck converter the input capacitor the catch diode D BTP pump capacitors ...

Page 52

Buck output capacitor (C The choice of the output capacitor effects straight to the minimum achievable ripple which is seen at the output of the buck converter. In continuous conduction mode the ripple of the output voltage equals: ...

Page 53

Bootstrap capacitor (C The voltage at the Bootstrap capacitor does not exceed 15V, a ceramic type with a minimum the buck output capacitance and voltage class 16V would be sufficient. 5.2.6 External charge pump capacitors ...

Page 54

Reverse polarity protection The Buck converter is due to the parasitic source drain diode of the DMOS not reverse polarity protected. Therefore example, the reverse polarity diode is shown in the application circuit, in general the ...

Page 55

Components recommendation - overview Device Type L B82479 I DO3340P-473 DO5022P-683 DS5022P-473 SLF12575T-330M3R2 C Ceramic I1 C Low ESR tantalum I2 C Ceramic I3 D S3B Boost L B82479 B DO3340P-473 DO5022P-683 DS5022P-473 SLF12575T-330M3R2 C Ceramic BTSR D ...

Page 56

Layout recommendation The most sensitive points for Buck converters - when considering the layout - are the nodes at the input and the output of the Buck switch, the DMOS transistor. For proper operation the external catch diode ...

Page 57

Package Outlines P-DSO-36-12 SMD = Surface Mounted Device Dimensions in mm 1.1 ±0.1 0.25 Index Marking 1 x 45˚ 1) Does not include plastic or metal protrusion of 0.15 max. per side see also: http://www.infineon.com -> Products -> ...

Page 58

... Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies failure of such components can reasonably be expected to cause the fail- ure of that life-support device or system affect the safety or effectiveness of that device or system. Life sup- port devices or systems are intended to be implanted in the human body support and/or maintain and sus- tain and/or protect human life ...

Related keywords