LT1766 Linear Technology, LT1766 Datasheet - Page 6

no-image

LT1766

Manufacturer Part Number
LT1766
Description
5.5V to 60V 1.5A/ 200kHz Step-Down Switching Regulator
Manufacturer
Linear Technology
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LT1766
Manufacturer:
LT
Quantity:
20 000
Part Number:
LT1766CGN
Manufacturer:
LINEAR
Quantity:
1 831
Part Number:
LT1766CGN
Manufacturer:
LINEAR/凌特
Quantity:
20 000
Part Number:
LT1766CS8
Manufacturer:
LT
Quantity:
10 000
Part Number:
LT1766CS8-SYNC
Manufacturer:
LT
Quantity:
10 000
Part Number:
LT1766EFE
Manufacturer:
LINEAR/凌特
Quantity:
20 000
Part Number:
LT1766EFE#PBF
Manufacturer:
LT
Quantity:
91
Part Number:
LT1766EFE#PBF
Manufacturer:
LINEAR/凌特
Quantity:
20 000
Part Number:
LT1766EFE#TRPBF
Manufacturer:
LTNEAR
Quantity:
20 000
Part Number:
LT1766EFE#TRPBF
0
Part Number:
LT1766EFEPBF
Manufacturer:
HARRIS
Quantity:
118
BLOCK DIAGRA
LT1766/LT1766-5
PI FU CTIO S
switch. V
voltage on the BIAS pin is not present. High dI/dt edges
occur on this pin during switch turn on and off. Keep the
path short from the V
capacitor, through the catch diode back to SW. All trace
inductance on this path will create a voltage spike at switch
off, adding to the V
BOOST (Pin 6): The BOOST pin is used to provide a drive
voltage, higher than the input voltage, to the internal
bipolar NPN power switch. Without this added voltage, the
typical switch voltage loss would be about 1.5V. The
additional BOOST voltage allows the switch to saturate
and voltage loss approximates that of a 0.2 FET struc-
ture, but with much smaller die area.
BIAS (Pin 10): The BIAS pin is used to improve efficiency
when operating at higher input voltages and light load
current. Connecting this pin to the regulated output volt-
age forces most of the internal circuitry to draw its
operating current from the output voltage rather than the
input supply. This architecture increases efficiency espe-
cially when the input voltage is much higher than the
output. Minimum output voltage setting for this mode of
operation is 3V.
V
and the input of the peak switch current comparator. It is
normally used for frequency compensation, but can also
serve as a current clamp or control loop override. V
at about 0.9V for light loads and 2.1V at maximum load. It
can be driven to ground to shut off the regulator, but if
driven high, current must be limited to 4mA.
The LT1766 is a constant frequency, current mode buck
converter. This means that there is an internal clock and
two feedback loops that control the duty cycle of the power
switch. In addition to the normal error amplifier, there is a
current sense amplifier that monitors switch current on a
cycle-by-cycle basis. A switch cycle starts with an oscilla-
tor pulse which sets the R
When switch current reaches a level set by the inverting
6
V
C
IN
U
(Pin 11) The V
(Pin 4): This is the collector of the on-chip power NPN
IN
U
powers the internal control circuitry when a
C
CE
pin is the output of the error amplifier
U
voltage across the internal NPN.
IN
S
pin through the input bypass
W
flip-flop to turn the switch on.
C
sits
FB/SENSE (Pin 12): The feedback pin is used to set the
output voltage using an external voltage divider that gen-
erates 1.22V at the pin for the desired output voltage. The
5V fixed output voltage parts have the divider included on
the chip and the FB pin is used as a SENSE pin, connected
directly to the 5V output. Three additional functions are
performed by the FB pin. When the pin voltage drops
below 0.6V, switch current limit is reduced and the exter-
nal SYNC function is disabled. Below 0.8V, switching
frequency is also reduced. See Feedback Pin Functions in
Applications Information for details.
SYNC (Pin 14): The SYNC pin is used to synchronize the
internal oscillator to an external signal. It is directly logic
compatible and can be driven with any signal between
10% and 90% duty cycle. The synchronizing range is
equal to initial operating frequency up to 700kHz. See
Synchronizing in Applications Information for details.
SHDN (Pin 15): The SHDN pin is used to turn off the
regulator and to reduce input drain current to a few
microamperes. This pin has two thresholds: one at 2.38V
to disable switching and a second at 0.4V to force com-
plete micropower shutdown. The 2.38V threshold func-
tions as an accurate undervoltage lockout (UVLO);
sometimes used to prevent the regulator from delivering
power until the input voltage has reached a predetermined
level.
If the SHDN pin functions are not required, the pin can
either be left open (to allow an internal bias current to lift
the pin to a default high state) or be forced high to a level
not to exceed 6V.
input of the comparator, the flip-flop is reset and the
switch turns off. Output voltage control is obtained by
using the output of the error amplifier to set the switch
current trip point. This technique means that the error
amplifier commands current to be delivered to the output
rather than voltage. A voltage fed system will have low
phase shift up to the resonant frequency of the inductor
and output capacitor, then an abrupt 180 shift will occur.
1766fa

Related parts for LT1766