CY7C1363C-133AJXC Cypress Semiconductor Corp, CY7C1363C-133AJXC Datasheet - Page 14

IC SRAM 9MBIT 133MHZ 100LQFP

CY7C1363C-133AJXC

Manufacturer Part Number
CY7C1363C-133AJXC
Description
IC SRAM 9MBIT 133MHZ 100LQFP
Manufacturer
Cypress Semiconductor Corp
Type
Synchronousr
Datasheet

Specifications of CY7C1363C-133AJXC

Memory Size
9M (512K x 18)
Package / Case
100-LQFP
Format - Memory
RAM
Memory Type
SRAM - Synchronous
Speed
133MHz
Interface
Parallel
Voltage - Supply
3.135 V ~ 3.6 V
Operating Temperature
0°C ~ 70°C
Access Time
6.5 ns
Maximum Clock Frequency
133 MHz
Supply Voltage (max)
3.6 V
Supply Voltage (min)
3.135 V
Maximum Operating Current
250 mA
Maximum Operating Temperature
+ 70 C
Minimum Operating Temperature
0 C
Mounting Style
SMD/SMT
Number Of Ports
2
Operating Supply Voltage
3.3 V
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant
Other names
428-2130
CY7C1363C-133AJXC

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
CY7C1363C-133AJXC
Manufacturer:
Cypress Semiconductor Corp
Quantity:
10 000
Part Number:
CY7C1363C-133AJXC
Manufacturer:
CYPRESS/赛普拉斯
Quantity:
20 000
Part Number:
CY7C1363C-133AJXCT
Manufacturer:
Cypress Semiconductor Corp
Quantity:
10 000
Performing a TAP Reset
A RESET is performed by forcing TMS HIGH (V
edges of TCK. This RESET does not affect the operation of the
SRAM and may be performed while the SRAM is operating.
At power up, the TAP is reset internally to ensure that TDO
comes up in a high Z state.
TAP Registers
Registers are connected between the TDI and TDO balls and
allow data to be scanned into and out of the SRAM test circuitry.
Only one register can be selected at a time through the
instruction register. Data is serially loaded into the TDI ball on the
rising edge of TCK. Data is output on the TDO ball on the falling
edge of TCK.
Instruction Register
Three-bit instructions can be serially loaded into the instruction
register. This register is loaded when it is placed between the TDI
and TDO balls as shown in the
page
the IDCODE instruction. It is also loaded with the IDCODE
instruction if the controller is placed in a reset state as described
in the previous section.
When the TAP controller is in the Capture-IR state, the two least
significant bits are loaded with a binary ‘01’ pattern to enable fault
isolation of the board-level serial test data path.
Bypass Register
To save time when serially shifting data through registers, it is
sometimes advantageous to skip certain chips. The bypass
register is a single-bit register that can be placed between the
TDI and TDO balls. This enables data to be shifted through the
SRAM with minimal delay. The bypass register is set LOW (V
when the BYPASS instruction is executed.
Boundary Scan Register
The boundary scan register is connected to all the input and
bidirectional balls on the SRAM.
The boundary scan register is loaded with the contents of the
RAM I/O ring when the TAP controller is in the Capture-DR state
and is then placed between the TDI and TDO balls when the
controller is moved to the Shift-DR state. The EXTEST,
SAMPLE/PRELOAD, and SAMPLE Z instructions can be used
to capture the contents of the I/O ring.
The
FBGA Boundary Scan Order on page 20
the bits are connected. Each bit corresponds to one of the bumps
on the SRAM package. The MSB of the register is connected to
TDI and the LSB is connected to TDO.
Identification (ID) Register
The ID register is loaded with a vendor-specific, 32-bit code
during the Capture-DR state when the IDCODE command is
loaded in the instruction register. The IDCODE is hardwired into
the SRAM and can be shifted out when the TAP controller is in
the Shift-DR state. The ID register has a vendor code and other
information described in
page
Document Number: 38-05541 Rev. *J
119-ball BGA Boundary Scan Order on page 19
13. Upon power-up, the instruction register is loaded with
17.
Identification Register Definitions on
TAP Controller Block Diagram on
show the order in which
DD
) for five rising
and
165-ball
SS
)
TAP Instruction Set
Overview
Eight different instructions are possible with the three-bit
instruction register. All combinations are listed in the Instruction
Codes table. Three of these instructions are listed as
RESERVED and should not be used. The other five instructions
are described in detail in this section.
The TAP controller used in this SRAM is not fully compliant to the
1149.1 convention because some of the mandatory 1149.1
instructions are not fully implemented.
The TAP controller cannot be used to load address data or
control signals into the SRAM and cannot preload the I/O buffers.
The SRAM does not implement the 1149.1 commands EXTEST
or INTEST or the PRELOAD portion of SAMPLE/PRELOAD;
rather, it performs a capture of the I/O ring when these
instructions are executed.
Instructions are loaded into the TAP controller during the Shift-IR
state when the instruction register is placed between TDI and
TDO. During this state, instructions are shifted through the
instruction register through the TDI and TDO balls. To execute
the instruction once it is shifted in, the TAP controller needs to be
moved into the Update-IR state.
EXTEST
EXTEST is a mandatory 1149.1 instruction which is to be
executed whenever the instruction register is loaded with all 0s.
EXTEST is not implemented in this SRAM TAP controller, and
therefore this device is not compliant to 1149.1. The TAP
controller does recognize an all-0 instruction.
When an EXTEST instruction is loaded into the instruction
register, the SRAM responds as if a SAMPLE/PRELOAD
instruction has been loaded. There is one difference between the
two instructions. Unlike the SAMPLE/PRELOAD instruction,
EXTEST places the SRAM outputs in a high Z state.
IDCODE
The IDCODE instruction causes a vendor-specific, 32-bit code
to be loaded into the instruction register. It also places the
instruction register between the TDI and TDO balls and enables
the IDCODE to be shifted out of the device when the TAP
controller enters the Shift-DR state.
The IDCODE instruction is loaded into the instruction register
upon power-up or whenever the TAP controller is given a test
logic reset state.
SAMPLE Z
The SAMPLE Z instruction causes the boundary scan register to
be connected between the TDI and TDO balls when the TAP
controller is in a Shift-DR state. It also places all SRAM outputs
into a high Z state.
SAMPLE/PRELOAD
SAMPLE/PRELOAD is a 1149.1-mandatory instruction. When
the SAMPLE/PRELOAD instructions are loaded into the
instruction register and the TAP controller is in the Capture-DR
state, a snapshot of data on the inputs and output pins is
captured in the boundary scan register.
CY7C1361C/CY7C1363C
Page 14 of 34
[+] Feedback

Related parts for CY7C1363C-133AJXC