LM20333EVAL National Semiconductor, LM20333EVAL Datasheet - Page 17

no-image

LM20333EVAL

Manufacturer Part Number
LM20333EVAL
Description
EVALUATION BOARD FOR THE LM20333
Manufacturer
National Semiconductor
Series
PowerWise®r
Datasheets

Specifications of LM20333EVAL

Main Purpose
DC/DC, Step Down
Outputs And Type
1, Non-Isolated
Voltage - Output
3.3V
Current - Output
3A
Voltage - Input
4.5 ~ 25V
Regulator Topology
Buck
Board Type
Fully Populated
Utilized Ic / Part
LM20333
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
Power - Output
-
Frequency - Switching
-
ground bounce, and resistive voltage loss in the traces. These
can send erroneous signals to the DC-DC converter resulting
in poor regulation or instability.
Good layout can be implemented by following a few simple
design rules.
1. Minimize area of switched current loops. In a buck regulator
there are two loops where currents are switched at high slew
rates. The first loop starts from the input capacitor, to the reg-
ulator VIN pin, to the regulator SW pin, to the inductor then
out to the output capacitor and load. The second loop starts
from the output capacitor ground, to the regulator GND pins,
to the inductor and then out to the load (see Figure 13). To
minimize both loop areas the input capacitor should be placed
as close as possible to the VIN pin. Grounding for both the
input and output capacitor should consist of a small localized
top side plane that connects to GND and the exposed pad
(EP). The inductor should be placed as close as possible to
the SW pin and output capacitor.
2. Minimize the copper area of the switch node. Since the
LM20333 has the SW pins on opposite sides of the package
it is recommended that the SW pins should be connected with
a trace that runs around the package. The inductor should be
placed at an equal distance from the SW pins using 100 mil
wide traces to minimize capacitive and conductive losses.
3. Have a single point ground for all device grounds located
under the EP. The ground connections for the compensation,
feedback, and soft-start components should be connected
FIGURE 13. Schematic of LM20333 Highlighting Layout Sensitive Nodes
17
together then routed to the EP pin of the device. The AGND
pin should connect to GND under the EP. If not properly han-
dled poor grounding can result in degraded load regulation or
erratic switching behavior.
4. Minimize trace length to the FB pin. Since the feedback
node can be high impedance the trace from the output resistor
divider to FB pin should be as short as possible. This is most
important when high value resistors are used to set the output
voltage. The feedback trace should be routed away from the
SW pin and inductor to avoid contaminating the feedback sig-
nal with switch noise.
5. Make input and output bus connections as wide as possi-
ble. This reduces any voltage drops on the input or output of
the converter and can improve efficiency. Voltage accuracy
at the load is important so make sure feedback voltage sense
is made at the load. Doing so will correct for voltage drops at
the load and provide the best output accuracy.
6. Provide adequate device heatsinking. For most 3A designs
a four layer board is recommended. Use as many vias as is
possible to connect the EP to the power plane heatsink. For
best results use a 5x4 via array with a minimum via diameter
of 12 mils. "Via tenting" with the solder mask may be neces-
sary to prevent wicking of the solder paste applied to the EP.
See the Thermal Considerations section to ensure enough
copper heatsinking area is used to keep the junction temper-
ature below 125°C.
30051646
www.national.com

Related parts for LM20333EVAL