DSPIC33FJ12GP202-I/SS Microchip Technology, DSPIC33FJ12GP202-I/SS Datasheet - Page 42

IC DSPIC MCU/DSP 12K 28SSOP

DSPIC33FJ12GP202-I/SS

Manufacturer Part Number
DSPIC33FJ12GP202-I/SS
Description
IC DSPIC MCU/DSP 12K 28SSOP
Manufacturer
Microchip Technology
Series
dsPIC™ 33Fr

Specifications of DSPIC33FJ12GP202-I/SS

Core Processor
dsPIC
Core Size
16-Bit
Speed
40 MIPs
Connectivity
I²C, IrDA, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
21
Program Memory Size
12KB (12K x 8)
Program Memory Type
FLASH
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
3 V ~ 3.6 V
Data Converters
A/D 10x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-SSOP
Core Frequency
40MHz
Core Supply Voltage
2.75V
Embedded Interface Type
I2C, JTAG, SPI, UART
No. Of I/o's
21
Flash Memory Size
12KB
Supply Voltage Range
3V To 3.6V
Package
28SSOP
Device Core
dsPIC
Family Name
dsPIC33
Maximum Speed
40 MHz
Operating Supply Voltage
3.3 V
Data Bus Width
16 Bit
Number Of Programmable I/os
21
Interface Type
I2C/SPI/UART
On-chip Adc
10-chx12-bit
Number Of Timers
3
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant
dsPIC33FJ12GP201/202
3.4
Modulo Addressing mode is a method of providing an
automated means to support circular data buffers using
hardware. The objective is to remove the need for
software to perform data address boundary checks
when executing tightly looped code, as is typical in
many DSP algorithms.
Modulo Addressing can operate in either data or program
space (since the data pointer mechanism is essentially
the same for both). One circular buffer can be supported
in each of the X (which also provides the pointers into
program space) and Y data spaces. Modulo Addressing
can operate on any W register pointer. However, it is not
advisable to use W14 or W15 for Modulo Addressing
since these two registers are used as the Stack Frame
Pointer and Stack Pointer, respectively.
In general, any particular circular buffer can be config-
ured to operate in only one direction, as there are
certain restrictions on the buffer start address (for incre-
menting buffers), or end address (for decrementing
buffers), based upon the direction of the buffer.
The only exception to the usage restrictions is for
buffers that have a power-of-two length. As these
buffers satisfy the start and end address criteria, they
can operate in a bidirectional mode (that is, address
boundary checks are performed on both the lower and
upper address boundaries).
3.4.1
The Modulo Addressing scheme requires that a starting
and ending address be specified and loaded into the
16-bit Modulo Buffer Address registers: XMODSRT,
XMODEND,
Table 3-1).
FIGURE 3-5:
DS70264C-page 40
Address
0x1100
0x1163
Byte
Modulo Addressing
START AND END ADDRESS
Start Addr = 0x1100
End Addr = 0x1163
Length = 0x0032 words
YMODSRT
MODULO ADDRESSING OPERATION EXAMPLE
and
YMODEND
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
DO
MOV
AGAIN: INC
(see
Preliminary
#0x1100, W0
W0, XMODSRT
#0x1163, W0
W0, MODEND
#0x8001, W0
W0, MODCON
#0x0000, W0
#0x1110, W1
AGAIN, #0x31
W0, [W1++]
W0, W0
corresponding start and end addresses. The maximum
possible length of the circular buffer is 32K words
register, MODCON<15:0>, contains enable flags as well
The length of a circular buffer is not directly specified. It
is
(64 Kbytes).
3.4.2
The Modulo and Bit-Reversed Addressing Control
as a W register field to specify the W Address registers.
The XWM and YWM fields select the registers that will
operate with Modulo Addressing:
• If XWM = 15, X RAGU and X WAGU Modulo
• If YWM = 15, Y AGU Modulo Addressing is
The X Address Space Pointer W register (XWM), to
which Modulo Addressing is to be applied, is stored in
MODCON<3:0> (see Table 3-1). Modulo Addressing is
enabled for X data space when XWM is set to any value
other than ‘15’ and the XMODEN bit is set at
MODCON<15>.
The Y Address Space Pointer W register (YWM) to
which Modulo Addressing is to be applied is stored in
MODCON<7:4>. Modulo Addressing is enabled for Y
data space when YWM is set to any value other than
‘15’ and the YMODEN bit is set at MODCON<14>.
Note:
Addressing is disabled.
disabled.
determined
;set modulo start address
;set modulo end address
;enable W1, X AGU for modulo
;W0 holds buffer fill value
;point W1 to buffer
;fill the 50 buffer locations
;fill the next location
;increment the fill value
Y space Modulo Addressing EA calcula-
tions assume word-sized data (LSB of
every EA is always clear).
W ADDRESS REGISTER
SELECTION
by
the
© 2008 Microchip Technology Inc.
difference
between
the

Related parts for DSPIC33FJ12GP202-I/SS