ATMEGA649V-8AU Atmel, ATMEGA649V-8AU Datasheet - Page 282

IC AVR MCU FLASH 64K 64TQFP

ATMEGA649V-8AU

Manufacturer Part Number
ATMEGA649V-8AU
Description
IC AVR MCU FLASH 64K 64TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA649V-8AU

Core Processor
AVR
Core Size
8-Bit
Speed
8MHz
Connectivity
SPI, UART/USART, USI
Peripherals
Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
64KB (32K x 16)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
Processor Series
ATMEGA64x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
4 KB
Interface Type
SPI, USART, USI
Maximum Clock Frequency
8 MHz
Number Of Programmable I/os
54
Number Of Timers
3
Operating Supply Voltage
1.8 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Package
64TQFP
Device Core
AVR
Family Name
ATmega
Maximum Speed
8 MHz
Cpu Family
ATmega
Device Core Size
8b
Frequency (max)
8MHz
Total Internal Ram Size
4KB
# I/os (max)
54
Number Of Timers - General Purpose
3
Operating Supply Voltage (typ)
3.3/5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
2.7V
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
64
Package Type
TQFP
For Use With
ATSTK600-TQFP64 - STK600 SOCKET/ADAPTER 64-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAG770-1005 - ISP 4PORT FOR ATMEL AVR MCU JTAG770-1004 - ISP 4PORT FOR ATMEL AVR MCU SPIATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEM
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA649V-8AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA649V-8AUR
Manufacturer:
Atmel
Quantity:
10 000
26.5
282
Entering the Boot Loader Program
ATmega329/3290/649/6490
Table 26-2.
Note:
Table 26-3.
Note:
Entering the Boot Loader takes place by a jump or call from the application program. This may
be initiated by a trigger such as a command received via USART, or SPI interface. Alternatively,
the Boot Reset Fuse can be programmed so that the Reset Vector is pointing to the Boot Flash
start address after a reset. In this case, the Boot Loader is started after a reset. After the applica-
tion code is loaded, the program can start executing the application code. Note that the fuses
cannot be changed by the MCU itself. This means that once the Boot Reset Fuse is pro-
grammed, the Reset Vector will always point to the Boot Loader Reset and the fuse can only be
changed through the serial or parallel programming interface.
Table 26-4.
Note:
BLB0
Mode
BLB1
Mode
BOOTRST
1
2
3
4
1
2
3
4
1
0
1. “1” means unprogrammed, “0” means programmed
1. “1” means unprogrammed, “0” means programmed
1. “1” means unprogrammed, “0” means programmed
BLB02
BLB12
1
1
0
0
1
1
0
0
Boot Lock Bit0 Protection Modes (Application Section)
Boot Lock Bit1 Protection Modes (Boot Loader Section)
Boot Reset Fuse
Reset Address
Reset Vector = Application Reset (address 0x0000)
Reset Vector = Boot Loader Reset (see
BLB01
BLB11
1
0
0
1
1
0
0
1
Protection
No restrictions for SPM or LPM accessing the Application section.
SPM is not allowed to write to the Application section.
SPM is not allowed to write to the Application section, and LPM executing
from the Boot Loader section is not allowed to read from the Application
section. If Interrupt Vectors are placed in the Boot Loader section,
interrupts are disabled while executing from the Application section.
LPM executing from the Boot Loader section is not allowed to read from
the Application section. If Interrupt Vectors are placed in the Boot Loader
section, interrupts are disabled while executing from the Application
section.
Protection
No restrictions for SPM or LPM accessing the Boot Loader section.
SPM is not allowed to write to the Boot Loader section.
SPM is not allowed to write to the Boot Loader section, and LPM
executing from the Application section is not allowed to read from the
Boot Loader section. If Interrupt Vectors are placed in the Application
section, interrupts are disabled while executing from the Boot Loader
section.
LPM executing from the Application section is not allowed to read from
the Boot Loader section. If Interrupt Vectors are placed in the Application
section, interrupts are disabled while executing from the Boot Loader
section.
(1)
Table 26-6 on page
(1)
(1)
290)
2552K–AVR–04/11

Related parts for ATMEGA649V-8AU