ATMEGA169P-16MCU Atmel, ATMEGA169P-16MCU Datasheet - Page 41

no-image

ATMEGA169P-16MCU

Manufacturer Part Number
ATMEGA169P-16MCU
Description
MCU AVR 16K ISP FLSH 16MHZ 64QFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheet

Specifications of ATMEGA169P-16MCU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
SPI, UART/USART, USI
Peripherals
Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number Of I /o
54
Program Memory Size
16KB (8K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-VQFN Exposed Pad, 64-HVQFN, 64-SQFN, 64-DHVQFN
For Use With
ATAVRBFLY - KIT EVALUATION AVR BUTTERFLYATSTK502 - MOD EXPANSION AVR STARTER 500
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
9.2
9.3
9.4
8018P–AVR–08/10
Idle Mode
ADC Noise Reduction Mode
Power-down Mode
When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle
mode, stopping the CPU but allowing LCD controller, the SPI, USART, Analog Comparator,
ADC, USI, Timer/Counters, Watchdog, and the interrupt system to continue operating. This
sleep mode basically halts clk
Idle mode enables the MCU to wake up from external triggered interrupts as well as internal
ones like the Timer Overflow and USART Transmit Complete interrupts. If wake-up from the
Analog Comparator interrupt is not required, the Analog Comparator can be powered down by
setting the ACD bit in the Analog Comparator Control and Status Register – ACSR. This will
reduce power consumption in Idle mode. If the ADC is enabled, a conversion starts automati-
cally when this mode is entered.
When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC
Noise Reduction mode, stopping the CPU but allowing the ADC, the external interrupts, the USI
start condition detection, Timer/Counter2, LCD Controller, and the Watchdog to continue operat-
ing (if enabled). This sleep mode basically halts clk
other clocks to run.
This improves the noise environment for the ADC, enabling higher resolution measurements. If
the ADC is enabled, a conversion starts automatically when this mode is entered. Apart form the
ADC Conversion Complete interrupt, only an External Reset, a Watchdog Reset, a Brown-out
Reset, an LCD controller interrupt, USI start condition interrupt, a Timer/Counter2 interrupt, an
SPM/EEPROM ready interrupt, an external level interrupt on INT0 or a pin change interrupt can
wake up the MCU from ADC Noise Reduction mode.
When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-
down mode. In this mode, the external Oscillator is stopped, while the external interrupts, the
USI start condition detection, and the Watchdog continue operating (if enabled). Only an Exter-
nal Reset, a Watchdog Reset, a Brown-out Reset, USI start condition interrupt, an external level
interrupt on INT0, or a pin change interrupt can wake up the MCU. This sleep mode basically
halts all generated clocks, allowing operation of asynchronous modules only.
Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed
level must be held for some time to wake up the MCU. Refer to
for details.
When waking up from Power-down mode, there is a delay from the wake-up condition occurs
until the wake-up becomes effective. This allows the clock to restart and become stable after
having been stopped. The wake-up period is defined by the same CKSEL Fuses that define the
Reset Time-out period, as described in
CPU
and clk
”Clock Sources” on page
FLASH
, while allowing the other clocks to run.
I/O
, clk
CPU
, and clk
”External Interrupts” on page 61
31.
ATmega169P
FLASH
, while allowing the
41

Related parts for ATMEGA169P-16MCU