DSPIC33FJ16GP304-E/PT Microchip Technology, DSPIC33FJ16GP304-E/PT Datasheet - Page 19

16-bit DSC, 16KB Flash,40 MIPS,nanoWatt 44 TQFP 10x10x1mm TRAY

DSPIC33FJ16GP304-E/PT

Manufacturer Part Number
DSPIC33FJ16GP304-E/PT
Description
16-bit DSC, 16KB Flash,40 MIPS,nanoWatt 44 TQFP 10x10x1mm TRAY
Manufacturer
Microchip Technology
Series
dsPIC™ 33Fr

Specifications of DSPIC33FJ16GP304-E/PT

Core Processor
dsPIC
Core Size
16-Bit
Speed
40 MIPs
Connectivity
I²C, IrDA, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
35
Program Memory Size
16KB (16K x 8)
Program Memory Type
FLASH
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
3 V ~ 3.6 V
Data Converters
A/D 13x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Package / Case
44-TQFP, 44-VQFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
DV164033 - KIT START EXPLORER 16 MPLAB ICD2DM240001 - BOARD DEMO PIC24/DSPIC33/PIC32
Eeprom Size
-
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC33FJ16GP304-E/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
3.0
The dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304
CPU module has a 16-bit (data) modified Harvard
architecture with an enhanced instruction set, including
significant support for DSP. The CPU has a 24-bit
instruction word with a variable length opcode field. The
Program Counter (PC) is 23 bits wide and addresses up
to 4M x 24 bits of user program memory space. The
actual amount of program memory implemented varies
by
mechanism is used to help maintain throughput and
provides predictable execution. All instructions execute
in a single cycle, with the exception of instructions that
change the program flow, the double word move
(MOV.D)
Overhead-free program loop constructs are supported
using the DO and REPEAT instructions, both of which are
interruptible at any point.
The dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304
devices have sixteen, 16-bit working registers in the
programmer’s model. Each of the working registers can
serve as a data, address or address offset register. The
16th working register (W15) operates as a software Stack
Pointer (SP) for interrupts and calls.
The dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304
instruction set has two classes of instructions: MCU and
DSP. These two instruction classes are seamlessly
integrated into a single CPU. The instruction set includes
many addressing modes and is designed for optimum C
compiler
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304 is
capable of executing a data (or program data) memory
read, a working register (data) read, a data memory write
and a program (instruction) memory read per instruction
cycle. As a result, three parameter instructions can be
supported, allowing A + B = C operations to be executed
in a single cycle.
A block diagram of the CPU is shown in
programmer’s model for the dsPIC33FJ32GP202/204 and
dsPIC33FJ16GP304 is shown in
© 2011 Microchip Technology Inc.
dsPIC33FJ32GP202/204 and dsPIC33FJ16GP304
Note 1: This data sheet summarizes the features
device.
2: Some registers and associated bits
CPU
instruction
efficiency.
of the dsPIC33FJ32GP202/204 and
dsPIC33FJ16GP304 family of devices. It
is not intended to be a comprehensive
reference source. To complement the
information in this data sheet, refer to
Section 2. “CPU” (DS70204) of the
“dsPIC33F/PIC24H Family Reference
Manual”, which is available from the
Microchip website (www.microchip.com).
described in this section may not be
available on all devices. Refer to
Section 4.0 “Memory Organization”
this data sheet for device-specific register
and bit information.
A
single-cycle
and
For
most
the
Figure
instruction
table
instructions,
3-2.
Figure
instructions.
prefetch
3-1. The
the
in
3.1
The data space can be addressed as 32K words or
64 Kbytes and is split into two blocks, referred to as X
and Y data memory. Each memory block has its own
independent Address Generation Unit (AGU). The
MCU class of instructions operates solely through the
X memory AGU, which accesses the entire memory
map as one linear data space. Certain DSP instructions
operate through the X and Y AGUs to support dual
operand reads, which splits the data address space
into two parts. The X and Y data space boundary is
device-specific.
Overhead-free circular buffers (Modulo Addressing
mode) are supported in both X and Y address spaces.
The Modulo Addressing removes the software
boundary checking overhead for DSP algorithms.
Furthermore, the X AGU circular addressing can be
used with any of the MCU class of instructions. The X
AGU also supports Bit-Reversed Addressing to greatly
simplify input or output data reordering for radix-2 FFT
algorithms.
The upper 32 Kbytes of the data space memory map
can optionally be mapped into program space at any
16K program word boundary defined by the 8-bit
Program Space Visibility Page (PSVPAG) register. The
program to data space mapping feature lets any
instruction access program space as if it were data
space.
3.2
The DSP engine features a high-speed 17-bit by 17-bit
multiplier, a 40-bit ALU, two 40-bit saturating
accumulators and a 40-bit bidirectional barrel shifter.
The barrel shifter is capable of shifting a 40-bit value up
to 16 bits right or left, in a single cycle. The DSP
instructions
instructions and have been designed for optimal
real-time performance. The MAC instruction and other
associated instructions can concurrently fetch two data
operands from memory while multiplying two W
registers and accumulating and optionally saturating
the result in the same cycle. This instruction
functionality requires that the RAM data space be split
for these instructions and linear for all others. Data
space partitioning is achieved in a transparent and
flexible manner through dedicating certain working
registers to each address space.
Data Addressing Overview
DSP Engine Overview
operate
seamlessly
DS70290G-page 19
with
all
other

Related parts for DSPIC33FJ16GP304-E/PT