ATmega1281R231 Atmel Corporation, ATmega1281R231 Datasheet - Page 325

no-image

ATmega1281R231

Manufacturer Part Number
ATmega1281R231
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega1281R231

Flash (kbytes)
128 Kbytes
Max. Operating Frequency
16 MHz
Max I/o Pins
54
Spi
3
Twi (i2c)
1
Uart
2
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Crypto Engine
AES
Sram (kbytes)
8
Eeprom (bytes)
4096
Operating Voltage (vcc)
1.8 to 3.6
Timers
6
Frequency Band
2.4 GHz
Max Data Rate (mb/s)
2
Antenna Diversity
Yes
External Pa Control
Yes
Power Output (dbm)
3
Receiver Sensitivity (dbm)
-101
Receive Current Consumption (ma)
13.2
Transmit Current Consumption (ma)
14.4
Link Budget (dbm)
104
29.6.8
29.6.9
29.6.10
2549N–AVR–05/11
EEPROM Write Prevents Writing to SPMCSR
Reading the Fuse and Lock Bits from Software
Reading the Signature Row from Software
Note that an EEPROM write operation will block all software programming to Flash. Reading the
Fuses and Lock bits from software will also be prevented during the EEPROM write operation. It
is recommended that the user checks the status bit (EEPE) in the EECR Register and verifies
that the bit is cleared before writing to the SPMCSR Register.
It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the
Z-pointer with 0x0001 and set the BLBSET and SPMEN bits in SPMCSR. When an (E)LPM
instruction is executed within three CPU cycles after the BLBSET and SPMEN bits are set in
SPMCSR, the value of the Lock bits will be loaded in the destination register. The BLBSET and
SPMEN bits will auto-clear upon completion of reading the Lock bits or if no (E)LPM instruction
is executed within three CPU cycles or no SPM instruction is executed within four CPU cycles.
When BLBSET and SPMEN are cleared, (E)LPM will work as described in the
Manual.
The algorithm for reading the Fuse Low byte is similar to the one described above for reading
the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and set the BLBSET
and SPMEN bits in SPMCSR. When an (E)LPM instruction is executed within three cycles after
the BLBSET and SPMEN bits are set in the SPMCSR, the value of the Fuse Low byte (FLB) will
be loaded in the destination register as shown below. Refer to
detailed description and mapping of the Fuse Low byte.
Similarly, when reading the Fuse High byte, load 0x0003 in the Z-pointer. When an (E)LPM
instruction is executed within three cycles after the BLBSET and SPMEN bits are set in the
SPMCSR, the value of the Fuse High byte (FHB) will be loaded in the destination register as
shown below. Refer to
High byte.
When reading the Extended Fuse byte, load 0x0002 in the Z-pointer. When an (E)LPM instruc-
tion is executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR,
the value of the Extended Fuse byte (EFB) will be loaded in the destination register as shown
below. Refer to
Fuse byte.
Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are
unprogrammed, will be read as one.
To read the Signature Row from software, load the Z-pointer with the signature byte address
given in
LPM instruction is executed within three CPU cycles after the SIGRD and SPMEN bits are set in
Bit
Rd
Bit
Rd
Bit
Rd
Bit
Rd
Table 29-5 on page 326
FHB7
FLB7
Table 30-3 on page 336
7
7
7
7
Table 30-4 on page 337
FHB6
FLB6
6
6
6
6
ATmega640/1280/1281/2560/2561
BLB12
FHB5
and set the SIGRD and SPMEN bits in SPMCSR. When an
FLB5
5
5
5
5
for detailed description and mapping of the Extended
BLB11
FHB4
FLB4
4
4
4
4
for detailed description and mapping of the Fuse
BLB02
FLB3
FHB3
3
3
3
3
BLB01
FLB2
FHB2
EFB2
2
2
2
2
Table 30-5 on page 337
FLB1
FHB1
EFB1
LB2
1
1
1
1
FLB0
FHB0
EFB0
LB1
Instruction set
0
0
0
0
for a
325

Related parts for ATmega1281R231