C8051F996-GUR Silicon Labs, C8051F996-GUR Datasheet - Page 265

no-image

C8051F996-GUR

Manufacturer Part Number
C8051F996-GUR
Description
8-bit Microcontrollers - MCU 8kB ADC 14-CH CDC
Manufacturer
Silicon Labs
Datasheet

Specifications of C8051F996-GUR

Rohs
yes
Core
8051
Processor Series
C8051
Data Bus Width
8 bit
1 at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag
is set. While the SPI0 master transfers data to a slave on the MOSI line, the addressed SPI slave device
simultaneously transfers the contents of its shift register to the SPI master on the MISO line in a full-duplex
operation. Therefore, the SPIF flag serves as both a transmit-complete and receive-data-ready flag. The
data byte received from the slave is transferred MSB-first into the master's shift register. When a byte is
fully shifted into the register, it is moved to the receive buffer where it can be read by the processor by
reading SPI0DAT.
When configured as a master, SPI0 can operate in one of three different modes: multi-master mode, 3-wire
single-master mode, and 4-wire single-master mode. The default, multi-master mode is active when
NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In this mode, NSS is an input to the device, and
is used to disable the master SPI0 when another master is accessing the bus. When NSS is pulled low in
this mode, MSTEN (SPI0CN.6) and SPIEN (SPI0CN.0) are set to 0 to disable the SPI master device, and
a Mode Fault is generated (MODF, SPI0CN.5 = 1). Mode Fault will generate an interrupt if enabled. SPI0
must be manually re-enabled in software under these circumstances. In multi-master systems, devices will
typically default to being slave devices while they are not acting as the system master device. In multi-
master mode, slave devices can be addressed individually (if needed) using general-purpose I/O pins.
Figure 24.2 shows a connection diagram between two master devices in multiple-master mode.
3-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. In this
mode, NSS is not used, and is not mapped to an external port pin through the crossbar. Any slave devices
that must be addressed in this mode should be selected using general-purpose I/O pins. Figure 24.3
shows a connection diagram between a master device in 3-wire master mode and a slave device.
4-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 1. In this mode, NSS is configured as an
output pin, and can be used as a slave-select signal for a single SPI device. In this mode, the output value
of NSS is controlled (in software) with the bit NSSMD0 (SPI0CN.2). Additional slave devices can be
addressed using general-purpose I/O pins. Figure 24.4 shows a connection diagram for a master device in
4-wire master mode and two slave devices.
Figure 24.3. 3-Wire Single Master and 3-Wire Single Slave Mode Connection Diagram
Figure 24.2. Multiple-Master Mode Connection Diagram
Device 1
Master
Master
Device
MISO
MOSI
MISO
MOSI
GPIO
NSS
SCK
SCK
Rev. 1.1
C8051F99x-C8051F98x
GPIO
MISO
MOSI
SCK
NSS
MISO
MOSI
SCK
Device 2
Master
Device
Slave
265

Related parts for C8051F996-GUR