PIC18F4550-I/PT Microchip Technology Inc., PIC18F4550-I/PT Datasheet - Page 218

no-image

PIC18F4550-I/PT

Manufacturer Part Number
PIC18F4550-I/PT
Description
44 PIN, 32 KB FLASH, 2048 RAM, FS-USB 2.0
Manufacturer
Microchip Technology Inc.
Datasheet

Specifications of PIC18F4550-I/PT

A/d Inputs
13-Channel, 10-Bit
Comparators
2
Cpu Speed
12 MIPS
Eeprom Memory
256 Bytes
Input Output
34
Interface
I2C/SPI/UART/USART/USB
Memory Type
Flash
Number Of Bits
8
Package Type
44-pin TQFP
Programmable Memory
32K Bytes
Ram Size
2K Bytes
Speed
48 MHz
Timers
1-8-bit, 3-16-bit
Voltage, Range
2-5.5 V
Lead Free Status / Rohs Status
RoHS Compliant part Electrostatic Device

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F4550-I/PT
Manufacturer:
MURATA
Quantity:
12 000
Part Number:
PIC18F4550-I/PT
Manufacturer:
Microchip Technology
Quantity:
36 332
Part Number:
PIC18F4550-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC18F4550-I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
PIC18F4550-I/PT
0
Company:
Part Number:
PIC18F4550-I/PT
Quantity:
4 500
PIC18F2455/2550/4455/4550
19.4.4
Both 7-Bit and 10-Bit Slave modes implement
automatic clock stretching during a transmit sequence.
The SEN bit (SSPCON2<0>) allows clock stretching to
be enabled during receives. Setting SEN will cause
the SCL pin to be held low at the end of each data
receive sequence.
19.4.4.1
In 7-Bit Slave Receive mode, on the falling edge of the
ninth clock at the end of the ACK sequence if the BF
bit is set, the CKP bit in the SSPCON1 register is
automatically cleared, forcing the SCL output to be
held low. The CKP bit being cleared to ‘0’ will assert
the SCL line low. The CKP bit must be set in the user’s
ISR before reception is allowed to continue. By holding
the SCL line low, the user has time to service the ISR
and read the contents of the SSPBUF before the
master device can initiate another receive sequence.
This will prevent buffer overruns from occurring (see
Figure 19-15).
19.4.4.2
In 10-Bit Slave Receive mode during the address
sequence, clock stretching automatically takes place
but CKP is not cleared. During this time, if the UA bit is
set after the ninth clock, clock stretching is initiated.
The UA bit is set after receiving the upper byte of the
10-bit address and following the receive of the second
byte of the 10-bit address with the R/W bit cleared to
‘0’. The release of the clock line occurs upon updating
SSPADD. Clock stretching will occur on each data
receive sequence as described in 7-bit mode.
DS39632C-page 216
Note:
Note 1: If the user reads the contents of the
2: The CKP bit can be set in software
CLOCK STRETCHING
If the user polls the UA bit and clears it by
updating the SSPADD register before the
falling edge of the ninth clock occurs and if
the user hasn’t cleared the BF bit by read-
ing the SSPBUF register before that time,
then the CKP bit will still NOT be asserted
low. Clock stretching on the basis of the
state of the BF bit only occurs during a
data sequence, not an address sequence.
SSPBUF before the falling edge of the
ninth clock, thus clearing the BF bit, the
CKP bit will not be cleared and clock
stretching will not occur.
regardless of the state of the BF bit. The
user should be careful to clear the BF bit
in the ISR before the next receive
sequence in order to prevent an overflow
condition.
Clock Stretching for 7-Bit Slave
Receive Mode (SEN = 1)
Clock Stretching for 10-Bit Slave
Receive Mode (SEN = 1)
Preliminary
19.4.4.3
7-Bit Slave Transmit mode implements clock stretch-
ing by clearing the CKP bit after the falling edge of the
ninth clock if the BF bit is clear. This occurs regardless
of the state of the SEN bit.
The user’s ISR must set the CKP bit before transmis-
sion is allowed to continue. By holding the SCL line
low, the user has time to service the ISR and load the
contents of the SSPBUF before the master device can
initiate another transmit sequence (see Figure 19-10).
19.4.4.4
In 10-Bit Slave Transmit mode, clock stretching is
controlled during the first two address sequences by
the state of the UA bit, just as it is in 10-Bit Slave
Receive mode. The first two addresses are followed
by a third address sequence which contains the high-
order bits of the 10-bit address and the R/W bit set to
‘1’. After the third address sequence is performed, the
UA bit is not set, the module is now configured in
Transmit mode and clock stretching is controlled by
the BF flag as in 7-Bit Slave Transmit mode (see
Figure 19-13).
Note 1: If the user loads the contents of SSPBUF,
2: The CKP bit can be set in software
setting the BF bit before the falling edge of
the ninth clock, the CKP bit will not be
cleared and clock stretching will not occur.
regardless of the state of the BF bit.
Clock Stretching for 7-Bit Slave
Transmit Mode
Clock Stretching for 10-Bit Slave
Transmit Mode
© 2006 Microchip Technology Inc.

Related parts for PIC18F4550-I/PT