IC AMP AUDIO 55W STER D 32SOIC

TDA8932BT/N2,118

Manufacturer Part NumberTDA8932BT/N2,118
DescriptionIC AMP AUDIO 55W STER D 32SOIC
ManufacturerNXP Semiconductors
TypeClass D
TDA8932BT/N2,118 datasheet
 

Specifications of TDA8932BT/N2,118

Output Type1-Channel (Mono) or 2-Channel (Stereo)Package / Case32-SOIC (7.5mm Width)
Max Output Power X Channels @ Load55W x 1 @ 8 Ohm; 26.5W x 2 @ 4 OhmVoltage - Supply10 V ~ 36 V, ±5 V ~ 18 V
FeaturesDepop, Differential Inputs, Mute, Short-Circuit and Thermal ProtectionMounting TypeSurface Mount
ProductClass-DOutput Power55 W
Available Set Gain36 dBCommon Mode Rejection Ratio (min)75 dB
Thd Plus Noise0.007 %Operating Supply Voltage22 V
Supply Current145 mAMaximum Power Dissipation5000 mW
Maximum Operating Temperature+ 85 CMounting StyleSMD/SMT
Audio Load Resistance8 OhmsDual Supply Voltage+/- 11 V
Input Signal TypeDifferentialMinimum Operating Temperature- 40 C
Output Signal TypeDifferential, SingleSupply TypeSingle or Dual
Supply Voltage (max)36 VSupply Voltage (min)10 V
Lead Free Status / RoHS StatusLead free / RoHS CompliantOther names935283477118
TDA8932BT-T
TDA8932BT-T
1
Page 1
2
Page 2
3
Page 3
4
Page 4
5
Page 5
6
Page 6
7
Page 7
8
Page 8
9
Page 9
10
Page 10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Page 1/48

Download datasheet (310Kb)Embed
Next
TDA8932B
Class-D audio amplifier
Rev. 04 — 18 December 2008
1. General description
The TDA8932B is a high efficiency class-D amplifier with low power dissipation.
The continuous time output power is 2
or 1
30 W in mono full-bridge application (R
the device can be used without any external heat sink when playing music. Due to the
implementation of thermal foldback, even for high supply voltages and/or lower load
impedances, the device continues to operate with considerable music output power
without the need for an external heat sink.
The device has two full-differential inputs driving two independent outputs. It can be used
in a mono full-bridge configuration (BTL) or in a stereo half-bridge configuration (SE).
2. Features
I
Operating voltage from 10 V to 36 V asymmetrical or 5 V to 18 V symmetrical
I
Mono-bridged tied load (full-bridge) or stereo single-ended (half-bridge) application
I
Application without heat sink using thermally enhanced small outline package
I
High efficiency and low-power dissipation
I
Thermally protected and thermal foldback
I
Current limiting to avoid audio holes
I
Full short-circuit proof across load and to supply lines (using advanced current
protection)
I
Switchable internal or external oscillator (master-slave setting)
I
No pop noise
I
Full-differential inputs
3. Applications
I
Flat panel television sets
I
Flat panel monitor sets
I
Multimedia systems
I
Wireless speakers
I
Mini and micro systems
I
Home sound sets
Product data sheet
15 W in stereo half-bridge application (R
= 8 ). Due to the low power dissipation
L
= 4 )
L

TDA8932BT/N2,118 Summary of contents

  • Page 1

    TDA8932B Class-D audio amplifier Rev. 04 — 18 December 2008 1. General description The TDA8932B is a high efficiency class-D amplifier with low power dissipation. The continuous time output power mono full-bridge application ...

  • Page 2

    ... NXP Semiconductors 4. Quick reference data Table Symbol Parameter Supplies q(tot) Stereo SE channel o(RMS) Mono BTL o(RMS) [1] Output power is measured indirectly; based on R [2] Two layer application board (55 mm convection. 5. Ordering information Table 2. Type number Package TDA8932BT TDA8932BTW HTSSOP32 plastic thermal enhanced thin shrink small outline ...

  • Page 3

    ... NXP Semiconductors 6. Block diagram OSCREF 10 OSCILLATOR 2 IN1P V SSD 3 IN1N 12 INREF 15 IN2P 14 IN2N PROTECTIONS: OVP, OCP, OTP, 4 DIAG 7 CGND 6 POWERUP 5 ENGAGE 13 TEST Fig 1. Block diagram TDA8932B_4 Product data sheet OSCIO 31 PWM MODULATOR MANAGER PWM MODULATOR UVP, TF, WP MODE TDA8932B 9 1, 16, 17 SSA SSD(HW) Rev. 04 — ...

  • Page 4

    ... NXP Semiconductors 7. Pinning information 7.1 Pinning 1 V SSD(HW) IN1P 2 IN1N 3 4 DIAG ENGAGE 5 POWERUP 6 CGND DDA TDA8932BT V 9 SSA OSCREF 10 11 HVPREF 12 INREF TEST 13 IN2N 14 15 IN2P V 16 SSD(HW) 001aaf598 Fig 2. Pin configuration SO32 7.2 Pin description Table 3. Symbol V SSD(HW) ...

  • Page 5

    ... NXP Semiconductors Table 3. Symbol HVP2 V DDP2 BOOT2 OUT2 V SSP2 STAB2 STAB1 V SSP1 OUT1 BOOT1 V DDP1 HVP1 OSCIO V SSD(HW) Exposed die pad [1] The exposed die pad has to be connected Functional description 8.1 General The TDA8932B is a mono full-bridge or stereo half-bridge audio power amplifier using class-D technology ...

  • Page 6

    ... NXP Semiconductors 8.2 Mode selection and interfacing The TDA8932B supports four operating modes, selected using pins POWERUP and ENGAGE: • Sleep mode: with low supply current. • Mute mode: the amplifiers are switching idle (50 % duty cycle), but the audio signal at the output is suppressed by disabling the Vl-converter input stages ...

  • Page 7

    ... NXP Semiconductors V P POWERUP DREF HVPREF HVP1, HVP2 2.0 V (typical) 1.2 V (typical) ENGAGE audio OUT1, OUT2 PWM DIAG OSCIO Fig 4. Start-up sequence 8.3 Pulse width modulation frequency The output of the amplifi PWM signal with a carrier frequency of approximately 320 kHz. Using a 2nd-order low-pass filter in the application results in an analog audio signal across the loudspeaker ...

  • Page 8

    ... NXP Semiconductors 12. --------------------------- - osc Where oscillator frequency (Hz) osc Rosc = oscillator resistor (on pin OSCREF Fig 5. Table 5 For device synchronization see Table 5. Configuration Master Slave 8.4 Protection The following protection is included in the TDA8932B: • Thermal Foldback (TF) • OverTemperature Protection (OTP) • OverCurrent Protection (OCP) • ...

  • Page 9

    ... NXP Semiconductors 8.4.1 Thermal Foldback (TF) If the junction temperature of the TDA8932B exceeds the threshold level (T gain of the amplifier is decreased gradually to a level where the combination of dissipation (P) and the thermal resistance from junction to ambient [R temperature around the threshold level. This means that the device will not completely switch off, but remains operational at lower output power levels ...

  • Page 10

    ... NXP Semiconductors • When the amplifier is completely shut down due to activation of the OCP because a short-circuit to one of the supply lines is made, then during restart (after 100 ms) the window protection will be activated result the amplifier will not start until the short-circuit to the supply lines is removed. ...

  • Page 11

    ... NXP Semiconductors 8.5 Diagnostic input and output Whenever a protection other than TF is triggered, pin DIAG is forced LOW level (see Table 6). An internal reference supply will pull-up the open-drain DIAG output to approximately 2.4 V. This internal reference supply can deliver approximately 50 A. Pin DIAG refers to pin CGND. The diagnostic output signal during different short conditions is illustrated in device into Fault mode ...

  • Page 12

    ... NXP Semiconductors • Pins HVP1 and HVP2: The time required for charging the SE capacitor depends on its value. The half supply voltage output is disabled when the TDA8932B is used in a symmetrical supply application. • Pin HVPREF: This output voltage reference buffer charges the capacitor on pin HVPREF. • ...

  • Page 13

    ... NXP Semiconductors Table 7. Pin TDA8932B_4 Product data sheet Internal circuitry …continued Symbol Equivalent circuit ENGAGE 5 POWERUP CGND V DDA Rev. 04 — 18 December 2008 TDA8932B Class-D audio amplifier V 2.8 V DDA I ref = 100 CGND SSA 001aaf608 V DDA 6 V CGND 001aad788 SSA V DDA 7 V SSA ...

  • Page 14

    ... NXP Semiconductors Table 7. Pin TDA8932B_4 Product data sheet Internal circuitry …continued Symbol Equivalent circuit V SSA OSCREF HVPREF TEST DREF Rev. 04 — 18 December 2008 TDA8932B Class-D audio amplifier V DDA 9 V SSD 001aad791 V DDA I ref 10 V 001aad792 SSA V DDA 11 V SSA 001aaf604 ...

  • Page 15

    ... NXP Semiconductors Table 7. Pin TDA8932B_4 Product data sheet Internal circuitry …continued Symbol Equivalent circuit HVP2 HVP1 V DDP2 V SSP2 V SSP1 V DDP1 BOOT2 BOOT1 OUT2 OUT1 STAB2 STAB1 OSCIO Rev. 04 — 18 December 2008 TDA8932B Class-D audio amplifier V DDA 19 001aag026 SSA 20, 29 23, 26 ...

  • Page 16

    ... NXP Semiconductors 10. Limiting values Table 8. In accordance with the Absolute Maximum Rating System (IEC 60134). Symbol Parameter ORM stg T amb P V esd [ [2] Measured with respect to pin INREF; V [3] Measured with respect to pin V [4] Measured with respect to pin CGND [6] Current limiting concept. ...

  • Page 17

    ... NXP Semiconductors Table 9. Thermal characteristics Symbol Parameter HTSSOP32 package R thermal resistance from junction th(j-a) to ambient thermal characterization j-lead parameter from junction to lead thermal characterization j-top parameter from junction to top of package R thermal resistance from junction th(j-c) to case [1] Measured on a JEDEC high K-factor test board (standard EIA/JESD 51-7) in free air with natural convection. ...

  • Page 18

    ... NXP Semiconductors Table 10. Static characteristics 320 kHz unless otherwise specified. P osc amb Symbol Parameter [1] Diagnostic output: pin DIAG V output voltage O Bias voltage for inputs: pin INREF V bias output voltage O(bias) Half supply voltage Pins HVP1 and HVP2 V output voltage O I output current ...

  • Page 19

    ... NXP Semiconductors Table 10. Static characteristics 320 kHz unless otherwise specified. P osc amb Symbol Parameter T thermal foldback activation act(th_fold) temperature Oscillator reference; pin OSCIO V HIGH-level input voltage IH V LOW-level input voltage IL V HIGH-level output voltage OH V LOW-level output voltage OL N maximum number of slaves ...

  • Page 20

    ... NXP Semiconductors Table 12. SE characteristics …continued kHz Symbol Parameter CMRR common mode rejection ratio output power efficiency po P RMS output power o(RMS) [ the series resistance of inductor and capacitor of low-pass LC filter in the application. s [2] THD+N is measured in a bandwidth kHz, AES17 brick wall. ...

  • Page 21

    ... NXP Semiconductors Table 13. BTL characteristics kHz osc Symbol Parameter V output noise voltage n(o) V mute output voltage O(mute) CMRR common mode rejection ratio output power efficiency po P RMS output power o(RMS) [ the series resistance of inductor and capacitor of low-pass LC filter in the application. s [2] THD+N is measured in a bandwidth kHz, AES17 brick wall ...

  • Page 22

    ... NXP Semiconductors 14. Application information 14.1 Output power estimation The output power P configuration can be estimated using SE configuration 0.5% BTL configuration 0.5% Where supply voltage load impedance ( ) L R DSon R = series resistance output inductor ( ) s R ESR t w(min oscillator frequency (Hz); 320 kHz typical with Rosc = 39 k ...

  • Page 23

    ... NXP Semiconductors ( THD+N = 0.5 % Fig 8. SE output power as a function of supply voltage ( THD+N = 0.5 % Fig 9. BTL output power as a function of supply voltage TDA8932B_4 Product data sheet 001aad768 ( ( THD 001aad770 ( ( THD Rev. 04 — 18 December 2008 TDA8932B Class-D audio amplifi © NXP B.V. 2008. All rights reserved. ...

  • Page 24

    ... NXP Semiconductors 14.2 Output current limiting The peak output current I normal operation the output current should not exceed this threshold level otherwise the output signal is distorted. The peak output current BTL configurations can be estimated using SE configuration max BTL configuration: ...

  • Page 25

    ... NXP Semiconductors The 3 dB cut-off frequency is equal to – 3dB Where cut-off frequency (Hz) -3dB R = load impedance ( ) L Cse = single-ended capacitance (F); see Table cut-off frequency. Table 15. Impedance ( ) 14.5 Gain reduction The gain of the TDA8932B is internally fixed for SE ( for BTL). The gain can be reduced by a resistive voltage divider at the input (see Fig 10. Input confi ...

  • Page 26

    ... NXP Semiconductors ----------------- - EQ R3 Where equivalent resistance ( ) parallel resistor ( ) Z = internal input impedance ( ) i Example: Substituting 4 results in a gain of G 14.6 Device synchronization If two or more TDA8932B devices are used in one application it is recommended that all devices are synchronized running at the same switching frequency to avoid beat tones. ...

  • Page 27

    ... NXP Semiconductors The HTSSOP32 package has an exposed die-pad that reduces significantly the overall R . Therefore it is required to solder the exposed die-pad (at V th(j-a) plane for cooling. The HTSSOP package will have a low thermal resistance when used on a multi-layer PCB with sufficient space for one or two thermal planes. ...

  • Page 28

    ... NXP Semiconductors Fig 12. SE application for reducing pumping effects TDA8932B_4 Product data sheet IN1P audio in1 IN1N IN2N audio in2 IN2P Rev. 04 — 18 December 2008 TDA8932B Class-D audio amplifier OUT1 OUT2 001aad763 © NXP B.V. 2008. All rights reserved ...

  • Page 29

    ... NXP Semiconductors 14.9 SE curves measured in reference design 2 10 THD+N (%) (1) 10 ( kHz i ( 100 kHz i Fig 13. Total harmonic distortion-plus-noise as a function of output power per channel 2 10 THD+N (%) 10 1 ( Fig 14. Total harmonic distortion-plus-noise as a function of frequency TDA8932B_4 Product data sheet 001aad772 2 10 THD+N ...

  • Page 30

    ... NXP Semiconductors (dB) 30 (1) ( 100 mV (RMS Cse = 1000 ( ( Fig 15. Gain as a function of frequency 120 S/N (dB kHz brick-wall filter AES17 Fig 17. Signal-to-noise ratio as a function of output power per channel TDA8932B_4 Product data sheet 001aad776 0 SVRR (dB 100 (Hz (shorted input) (1) V (2) V Fig 16. Supply voltage ripple rejection as a function of ...

  • Page 31

    ... NXP Semiconductors (W/channel kHz (short time P ); dashed line will require heat i O sink for continuous time output power ( THD ( THD THD ( THD Fig 19. Output power per channel as a function of supply voltage 100 po (%) kHz; ------------------------ - ( ( Fig 21. Output power efficiency as a function of output power per channel ...

  • Page 32

    ... NXP Semiconductors (W/channel) (3) 24 ( 120 240 360 kHz; 2 layer SO32 application L i board ( mm) without heat sink ( ( ( Fig 23. Output power per channel as a function of time ( sleep 0 0 0 100 mV (RMS value Fig 24. Output voltage as a function of voltage on pin POWERUP TDA8932B_4 ...

  • Page 33

    ... NXP Semiconductors 14.10 BTL curves measured in reference design 2 10 THD+N (%) ( kHz i ( kHz i ( 100 Hz i Fig 26. Total harmonic distortion-plus-noise as a function of output power 2 10 THD+N (%) ( Fig 27. Total harmonic distortion-plus-noise as a function of frequency TDA8932B_4 Product data sheet 001aad782 2 10 THD+N (%) ( 001aae114 2 10 ...

  • Page 34

    ... NXP Semiconductors (dB 100 mV (RMS ( ( Fig 28. Gain as a function of frequency 120 S/N (dB) (2) ( kHz brick-wall filter AES17 Fig 30. Signal-to-noise ratio as a function of output power TDA8932B_4 Product data sheet 001aae116 0 SVRR (dB) 20 (2) ( 100 (Hz (shorted input) (1) V (2) V Fig 29. Supply voltage ripple rejection as a function of ...

  • Page 35

    ... NXP Semiconductors (W) (3) 24 ( 120 240 360 kHz; 2 layer SO32 application L i board ( mm) without heat sink ( ( 13 ( Fig 32. Output power as a function of time 100 po (1) (%) 80 ( kHz; -------------------- ( ( Fig 33. Output power efficiency as a function of output power TDA8932B_4 Product data sheet 001aaf896 ( 480 600 t (s) b ...

  • Page 36

    ... NXP Semiconductors kHz; power dissipation in junction only; short time P i time output power ( ( Fig 35. Power dissipation as a function of supply voltage TDA8932B_4 Product data sheet 6 P (W) 4 (1) ( THD dashed line will require heat sink for continuous o Rev. 04 — 18 December 2008 TDA8932B Class-D audio amplifier ...

  • Page 37

    ... NXP Semiconductors 14.11 Typical application schematics (simplified) Rvdda VP 10 GND Cin 470 nF MUTE control Cen 470 nF SLEEP control Cosc 100 nF Rosc 39 k Chvpref Chvp 47 F (25 V) 100 nF Cin 470 nF Fig 36. Typical simplified application diagram for 2 TDA8932B_4 Product data sheet ...

  • Page 38

    ... NXP Semiconductors Rvdda VP 10 GND Cin Cin MUTE Cen control 470 nF SLEEP control Cosc 100 nF Rosc 39 k Chvp 100 nF Fig 37. Typical simplified application diagram for 1 TDA8932B_4 Product data sheet VP VPA Cvdda Cvddp 100 nF 220 F ( SSD(HW) SSD(HW IN1P OSCIO 2 31 IN1N ...

  • Page 39

    ... NXP Semiconductors Rvdda VDD 10 GND Rvssa VSS 10 Cin 470 nF MUTE control Cen 470 nF SLEEP control Cosc 100 nF Rosc VSSA 39 k Cin 470 nF Fig 38. Typical simplified application diagram for 2 TDA8932B_4 Product data sheet VDD VDDA Cvddp Cvdda 220 F 100 nF (25 V) Cvssp ...

  • Page 40

    ... NXP Semiconductors Rvdda VDD 10 GND Rvssa VSS 10 Cin Cin MUTE control SLEEP control Cosc 100 nF Rosc VSSA 39 k Fig 39. Typical simplified application diagram for 1 TDA8932B_4 Product data sheet VDD VDDA Cvddp Cvdda 220 F 100 nF (25 V) Cvssp Cvssa 220 F 100 nF (25 V) ...

  • Page 41

    ... NXP Semiconductors 15. Package outline SO32: plastic small outline package; 32 leads; body width 7 pin 1 index 1 e DIMENSIONS (inch dimensions are derived from the original mm dimensions) A UNIT max. 0.3 2.45 mm 2.65 0.25 0.1 2.25 0.012 0.096 inches 0.1 0.01 0.004 0.089 Note 1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included. ...

  • Page 42

    ... NXP Semiconductors HTSSOP32: plastic thermal enhanced thin shrink small outline package; 32 leads; body width 6.1 mm; lead pitch 0.65 mm; exposed die pad y exposed die pad side pin 1 index 1 e DIMENSIONS (mm are the original dimensions). A UNIT max. 0.15 0.95 mm 1.1 0.25 0.05 0.85 Notes 1 ...

  • Page 43

    ... NXP Semiconductors 16. Soldering of SMD packages This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note AN10365 “Surface mount reflow soldering description” . 16.1 Introduction to soldering Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits ...

  • Page 44

    ... NXP Semiconductors 16.4 Reflow soldering Key characteristics in reflow soldering are: • Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see reducing the process window • Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board • ...

  • Page 45

    ... NXP Semiconductors Fig 42. Temperature profiles for large and small components For further information on temperature profiles, refer to Application Note AN10365 “Surface mount reflow soldering description” . 17. Abbreviations Table 18. Acronym BTL DMOS ESD OCP OTP OVP PWM SE TF UBP UVP WP TDA8932B_4 ...

  • Page 46

    ... NXP Semiconductors 18. Revision history Table 19. Revision history Document ID Release date TDA8932B_4 20081218 • Modifications: I TDA8932B_3 20070621 TDA8932B_2 20070329 TDA8932B_1 20070214 TDA8932B_4 Product data sheet Data sheet status Product data sheet values amended in Table 1 and P Product data sheet Preliminary data sheet Objective data sheet Rev. 04 — ...

  • Page 47

    ... Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice ...

  • Page 48

    ... NXP Semiconductors 21. Contents 1 General description . . . . . . . . . . . . . . . . . . . . . . 1 2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 Quick reference data . . . . . . . . . . . . . . . . . . . . . 2 5 Ordering information . . . . . . . . . . . . . . . . . . . . . 2 6 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 Pinning information . . . . . . . . . . . . . . . . . . . . . . 4 7.1 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 7.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4 8 Functional description . . . . . . . . . . . . . . . . . . . 5 8.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 8.2 Mode selection and interfacing . . . . . . . . . . . . . 6 8.3 Pulse width modulation frequency . . . . . . . . . . 7 8 ...