AT90USB647 Atmel Corporation, AT90USB647 Datasheet - Page 23

no-image

AT90USB647

Manufacturer Part Number
AT90USB647
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of AT90USB647

Flash (kbytes)
64 Kbytes
Pin Count
64
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
48
Ext Interrupts
16
Usb Transceiver
1
Usb Speed
Full Speed
Usb Interface
Device + OTG
Spi
2
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
4
Eeprom (bytes)
2048
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
4
Output Compare Channels
10
Input Capture Channels
1
Pwm Channels
9
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Company:
Part Number:
AT90USB647-16AE
Quantity:
8
Part Number:
AT90USB647-16AU
Manufacturer:
HITACHI
Quantity:
2 000
Part Number:
AT90USB647-AU
Manufacturer:
MURATA
Quantity:
1 000
Part Number:
AT90USB647-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT90USB647-AUR
Manufacturer:
Atmel
Quantity:
1 951
Part Number:
AT90USB647-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT90USB647-MU
Manufacturer:
AAT
Quantity:
18 240
Part Number:
AT90USB647-MUR
Manufacturer:
AD
Quantity:
2 747
5.3
5.3.1
7593K–AVR–11/09
EEPROM Data Memory
EEPROM Read/Write Access
Figure 5-3.
The AT90USB64/128 contains 2K/4K bytes of data EEPROM memory. It is organized as a sep-
arate data space, in which single bytes can be read and written. The EEPROM has an
endurance of at least 100,000 write/erase cycles. The access between the EEPROM and the
CPU is described in the following, specifying the EEPROM Address Registers, the EEPROM
Data Register, and the EEPROM Control Register.
For a detailed description of SPI, JTAG and Parallel data downloading to the EEPROM, see
page
The EEPROM Access Registers are accessible in the I/O space.
The write access time for the EEPROM is given in
lets the user software detect when the next byte can be written. If the user code contains instruc-
tions that write the EEPROM, some precautions must be taken. In heavily filtered power
supplies, V
period of time to run at a voltage lower than specified as minimum for the clock frequency used.
See “Preventing EEPROM Corruption” on page 28.
situations.
In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.
Refer to the description of the EEPROM Control Register for details on this.
When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is
executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next
instruction is executed.
380,
page
CC
Address
clk
is likely to rise or fall slowly on power-up/down. This causes the device for some
On-chip Data SRAM Access Cycles
Data
Data
385, and
WR
CPU
RD
page 369
Compute Address
T1
Memory Access Instruction
respectively.
Address valid
for details on how to avoid problems in these
T2
Table
5-3. A self-timing function, however,
AT90USB64/128
Next Instruction
T3
23

Related parts for AT90USB647