GS8642Z18B GSI [GSI Technology], GS8642Z18B Datasheet

no-image

GS8642Z18B

Manufacturer Part Number
GS8642Z18B
Description
72Mb Pipelined and Flow Through Synchronous NBT SRAM
Manufacturer
GSI [GSI Technology]
Datasheet
119- & 209-Bump BGA
Commercial Temp
Industrial Temp
Features
• NBT (No Bus Turn Around) functionality allows zero wait
• 2.5 V or 3.3 V +10%/–10% core power supply
• 2.5 V or 3.3 V I/O supply
• User-configurable Pipeline and Flow Through mode
• ZQ mode pin for user-selectable high/low output drive
• IEEE 1149.1 JTAG-compatible Boundary Scan
• LBO pin for Linear or Interleave Burst mode
• Pin-compatible with 2Mb, 4Mb, 8Mb, and 16Mb devices
• Byte write operation (9-bit Bytes)
• 3 chip enable signals for easy depth expansion
• ZZ Pin for automatic power-down
• JEDEC-standard 119- or 209-bump BGA package
• Pb-Free 119- and 209-bump BGA packages available
Functional Description
The GS8642Z18/36/72 is a 72Mbit Synchronous Static
SRAM. GSI's NBT SRAMs, like ZBT, NtRAM, NoBL or
other pipelined read/double late write or flow through read/
single late write SRAMs, allow utilization of all available bus
bandwidth by eliminating the need to insert deselect cycles
when the device is switched from read to write cycles.
Rev: 1.02 5/2005
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.
Read-Write-Read bus utilization; fully pin-compatible with
both pipelined and flow through NtRAM™, NoBL™ and
ZBT™ SRAMs
Flow Through
Pipeline
3-1-1-1
2-1-1-1
72Mb Pipelined and Flow Through
Synchronous NBT SRAM
t
KQ
Curr (x18)
Curr (x36)
Curr (x72)
Curr (x18)
Curr (x36)
Curr (x72)
t
KQ
(x18/x36)
tCycle
tCycle
t
(x72)
KQ
Parameter Synopsis
1/34
-300
400
480
590
285
330
425
2.3
3.0
3.3
5.5
5.5
Because it is a synchronous device, address, data inputs, and
read/write control inputs are captured on the rising edge of the
input clock. Burst order control (LBO) must be tied to a power
rail for proper operation. Asynchronous inputs include the
Sleep mode enable (ZZ) and Output Enable. Output Enable can
be used to override the synchronous control of the output
drivers and turn the RAM's output drivers off at any time.
Write cycles are internally self-timed and initiated by the rising
edge of the clock input. This feature eliminates complex off-
chip write pulse generation required by asynchronous SRAMs
and simplifies input signal timing.
The GS8642Z18/36/72 may be configured by the user to
operate in Pipeline or Flow Through mode. Operating as a
pipelined synchronous device, in addition to the rising-edge-
triggered registers that capture input signals, the device
incorporates a rising edge triggered output register. For read
cycles, pipelined SRAM output data is temporarily stored by
the edge-triggered output register during the access cycle and
then released to the output drivers at the next rising edge of
clock.
The GS8642Z18/36/72 is implemented with GSI's high
performance CMOS technology and is available in a JEDEC-
standard 119-bump, 165-bump or 209-bump BGA package.
GS8642Z18(B)/GS8642Z36(B)/GS8642Z72(C)
-250
340
410
520
245
280
370
2.5
3.0
4.0
6.5
6.5
-200
290
350
435
220
250
315
3.0
3.0
5.0
7.5
7.5
-167
260
305
380
210
240
300
3.5
3.5
6.0
8.0
8.0
Unit
mA
mA
mA
mA
mA
mA
ns
ns
ns
ns
ns
Product Preview
© 2004, GSI Technology
300 MHz–167 MHz
2.5 V or 3.3 V V
2.5 V or 3.3 V I/O
DD

Related parts for GS8642Z18B

GS8642Z18B Summary of contents

Page 1

... The GS8642Z18/36/ 72Mbit Synchronous Static SRAM. GSI's NBT SRAMs, like ZBT, NtRAM, NoBL or other pipelined read/double late write or flow through read/ single late write SRAMs, allow utilization of all available bus bandwidth by eliminating the need to insert deselect cycles when the device is switched from read to write cycles. ...

Page 2

GS8642Z72C Pad Out–209-Bump BGA—Top View DQP DQP DDQ ...

Page 3

GS8642Z72 209-Bump BGA Pin Description Symbol Type I ...

Page 4

GS8642Z72 209-Bump BGA Pin Description Symbol Type I TMS I TDI O TDO I TCK DDQ Rev: 1.02 5/2005 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. ...

Page 5

GS8642Z36B Pad Out–119-Bump BGA—Top View DDQ DQC E DQC F V DDQ G DQC H DQC J V DDQ K DQD L DQD M V DDQ N DQD P DQD R NC ...

Page 6

... GS8642Z18B Pad Out–119-Bump BGA—Top View DDQ DQB DDQ DQB J V DDQ DQB M V DDQ N DQB DDQ Bump BGA— Rev: 1.02 5/2005 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. ...

Page 7

GS8642Z18/36 119-Bump BGA Pin Description Symbol Type I — ...

Page 8

... A B cycle with no Byte Write inputs active is a no-op cycle. The pipelined NBT SRAM provides double late write functionality, matching the write command versus data pipeline length (2 cycles) to the read command versus data pipeline length (2 cycles). At the first rising edge of clock, Enable, Write, Byte Write(s), and Address are registered. The Data In associated with that address is required at the third rising edge of clock ...

Page 9

... Dummy Read and Write abort can be considered NOPs because the SRAM performs no operation. A Write abort occurs when the W pin is sampled low but no Byte Write pins are active so no write operation is performed can be wired low to minimize the number of control signals provided to the SRAM. Output drivers will automatically turn off during write cycles. 4. ...

Page 10

Pipelined and Flow Through Read Write Control State Diagram New Read R R Burst Read B Key Input Command Code ƒ Transition Current State (n) Next State (n+1) n Clock (CK) Command Current State Current State and Next State Definition ...

Page 11

Intermediate B W High Z (Data In) Key Input Command Code ƒ Transition Current State (n) Intermediate State (N+1) Clock (CK) Command Current State and Next State Definition for Rev: 1.02 5/2005 Specifications cited are subject to change without notice. ...

Page 12

B W High Z (Data In) Key Input Command Code ƒ Transition Current State (n) Clock (CK) Command Current State and Next State Definition for: Rev: 1.02 5/2005 Specifications cited are subject to change without notice. For latest documentation see ...

Page 13

... SRAM to advance the internal address counter and use the counter generated address to read or write the SRAM. The starting address for the first cycle in a burst cycle series is loaded into the SRAM by driving the ADV pin low, into Load mode ...

Page 14

... During normal operation, ZZ must be pulled low, either by the user or by its internal pull down resistor. When ZZ is pulled high, the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to low, the SRAM operates normally after 2 cycles of wake up time. ...

Page 15

Absolute Maximum Ratings (All voltages reference Symbol Voltage in V DDQ V I/O V Voltage on Other Input Pins IN I Input Current on Any Pin IN I Output Current on Any I/O ...

Page 16

V Range Logic Levels DDQ3 Parameter V Input High Voltage DD V Input Low Voltage DD V I/O Input High Voltage DDQ V I/O Input Low Voltage DDQ Notes: 1. The part numbers of Industrial Temperature Range versions end the ...

Page 17

Undershoot Measurement and Timing 50% V – 2 20% tKC Capacitance 2 Parameter Input Capacitance Input/Output Capacitance Note: ...

Page 18

DC Electrical Characteristics Parameter Input Leakage Current (except mode pins) ZZInput Current Output Leakage Current (x36/x72) Output Leakage Current (x18) Output High Voltage Output High Voltage Output Low Voltage Rev: 1.02 5/2005 Specifications cited are subject to change without notice. ...

Page 19

Operating Currents Parameter Test Conditions (x72) Device Selected; All other inputs Operating (x32/ ≥V or ≤ V Current x36 Output open (x18) Standby ZZ ≥ V – 0.2 V — DD Current Device Deselected; Deselect All other inputs ...

Page 20

AC Electrical Characteristics Parameter Clock Cycle Time Clock to Output Valid (x18/x36) Clock to Output Valid (x72) Pipeline Clock to Output Invalid Clock to Output in Low-Z Setup time Hold time Clock Cycle Time Clock to Output Valid Clock to ...

Page 21

Write A Read CKE ADV Rev: 1.02 5/2005 Specifications cited are subject to change without notice. For latest documentation ...

Page 22

Write A Write CKE ADV A0– D(A) G *Note High(False ...

Page 23

JTAG Pin Descriptions Pin Pin Name I/O Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate TCK Test Clock In from the falling edge of TCK. The TMS input is sampled ...

Page 24

TDI TMS TCK Identification (ID) Register The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in Capture-DR state with the IDCODE command loaded ...

Page 25

ID Register Contents Die Revision Code Bit # x72 ...

Page 26

Test Logic Reset 1 0 Run Test Idle 0 Instruction Descriptions BYPASS When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This occurs when the TAP controller is moved to ...

Page 27

Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command. Then the EXTEST command is used to output the Boundary Scan Register’s contents, in parallel, on the RAM’s data output drivers on the ...

Page 28

JTAG Port Recommended Operating Conditions and DC Characteristics Parameter 3.3 V Test Port Input High Voltage 3.3 V Test Port Input Low Voltage 2.5 V Test Port Input High Voltage 2.5 V Test Port Input Low Voltage TMS, TCK and ...

Page 29

... TCK TDI TMS TDO Parallel SRAM input JTAG Port AC Electrical Characteristics Parameter Symbol TCK Cycle Time tTKC TCK Low to TDO Valid tTKQ TCK High Pulse Width tTKH TCK Low Pulse Width tTKL TDI & TMS Set Up Time tTS TDI & TMS Hold Time ...

Page 30

BGA Package Drawing (Package Body, 1.0 mm Bump Pitch Bump Array A aaa e Symbol Min Typ A A1 0.40 0.50 ∅b 0.50 0.60 c 0.31 0.36 D 21.9 22.0 ...

Page 31

Package Dimensions—119-Bump FPBGA (Package B, Variation 2 A1 TOP VIEW SEATING PLANE C Rev: 1.02 5/2005 ...

Page 32

... GS8642Z72C-167I Notes: 1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8642Z18B-167IB. 2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each device is Pipeline/Flow Through mode-selectable by the user ...

Page 33

... GS8642Z72GC-167I Notes: 1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS8642Z18B-167IB. 2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each device is Pipeline/Flow Through mode-selectable by the user ...

Page 34

... Sync SRAM Datasheet Revision History Types of Changes DS/DateRev. Code: Old; Format or Content New 8642Zxx_r1 8642Zxx_r1; 8642Zxx_r1_01 8642Zxx_r1_01; 8642Zxx_r1_02 Rev: 1.02 5/2005 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. GS8642Z18(B)/GS8642Z36(B)/GS8642Z72(C) Page;Revisions;Reason • Creation of new datasheet • ...

Related keywords