PIC16F747-I/ML Microchip Technology, PIC16F747-I/ML Datasheet - Page 176

IC PIC MCU FLASH 4KX14 44QFN

PIC16F747-I/ML

Manufacturer Part Number
PIC16F747-I/ML
Description
IC PIC MCU FLASH 4KX14 44QFN
Manufacturer
Microchip Technology
Series
PIC® 16Fr

Specifications of PIC16F747-I/ML

Core Processor
PIC
Core Size
8-Bit
Speed
20MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
36
Program Memory Size
7KB (4K x 14)
Program Memory Type
FLASH
Ram Size
368 x 8
Voltage - Supply (vcc/vdd)
4 V ~ 5.5 V
Data Converters
A/D 14x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
44-QFN
Processor Series
PIC16F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
368 B
Interface Type
AUSART, CCP, I2C, MSSP, SPI
Maximum Clock Frequency
20 MHz
Number Of Programmable I/os
36
Number Of Timers
8
Operating Supply Voltage
4 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734
Development Tools By Supplier
ICE2000, DM163022
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit
For Use With
XLT44QFN2 - SOCKET TRAN ICE 44QFN/40DIPAC164322 - MODULE SOCKET MPLAB PM3 28/44QFNI3DBF777 - BOARD DAUGHTER ICEPIC3444-1001 - DEMO BOARD FOR PICMICRO MCU
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC16F747-I/ML
Manufacturer:
MICRON
Quantity:
1 001
PIC16F7X7
15.8
In many applications, the ability to determine if the
device voltage (V
is a desirable feature. A window of operation for the
application can be created where the application
software can do “housekeeping tasks” before the
device voltage exits the valid operating range. This can
be done using the Low-Voltage Detect module.
This module is a software programmable circuitry
where a device voltage trip point can be specified.
When the voltage of the device becomes lower then the
specified point, an interrupt flag is set. If the interrupt is
enabled, the program execution will branch to the
interrupt vector address and the software can then
respond to that interrupt source.
The Low-Voltage Detect circuitry is completely under
software control. This allows the circuitry to be turned
off by the software which minimizes the current
consumption for the device.
Figure 15-3 shows a possible application voltage curve
(typically for batteries). Over time, the device voltage
decreases. When the device voltage equals voltage V
the LVD logic generates an interrupt. This occurs at
FIGURE 15-3:
DS30498C-page 174
Low-Voltage Detect
DD
V
V
) is below a specified voltage level
A
B
TYPICAL LOW-VOLTAGE DETECT APPLICATION
Time
T
A
A
T
,
B
time T
until the device voltage is no longer in valid operating
range, to shut-down the system. Voltage point V
minimum valid operating voltage specification. This
occurs at time T
time for shutdown.
The block diagram for the LVD module is shown in
Figure 15-4. A comparator uses an internally gener-
ated reference voltage as the set point. When the
selected tap output of the device voltage crosses the
set point (is lower than), the LVDIF bit is set.
Each node in the resistor divider represents a “trip
point” voltage. The “trip point” voltage is the minimum
supply voltage level at which the device can operate
before the LVD module asserts an interrupt. When the
supply voltage is equal to the trip point, the voltage
tapped off of the resistor array is equal to the 1.2V
internal reference voltage generated by the voltage
reference module. The comparator then generates an
interrupt signal setting the LVDIF bit. This voltage is
software programmable to any one of 16 values (see
Figure 15-4). The trip point is selected by programming
the LVDL3:LVDL0 bits (LVDCON<3:0>).
A
. The application software then has the time,
Legend:
V
V
A
B
= LVD trip point
= Minimum valid device
B
operating voltage
. The difference, T
 2004 Microchip Technology Inc.
B
– T
A
, is the total
B
is the

Related parts for PIC16F747-I/ML