P87C554SBAA,512 NXP Semiconductors, P87C554SBAA,512 Datasheet - Page 22

IC 80C51 MCU 16K OTP 64-PLCC

P87C554SBAA,512

Manufacturer Part Number
P87C554SBAA,512
Description
IC 80C51 MCU 16K OTP 64-PLCC
Manufacturer
NXP Semiconductors
Series
87Cr
Datasheets

Specifications of P87C554SBAA,512

Core Processor
8051
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, I²C, UART/USART
Peripherals
POR, PWM, WDT
Number Of I /o
40
Program Memory Size
16KB (16K x 8)
Program Memory Type
OTP
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
0°C ~ 70°C
Package / Case
68-PLCC
Cpu Family
87C
Device Core
80C51
Device Core Size
8b
Frequency (max)
16MHz
Interface Type
I2C/UART
Total Internal Ram Size
512Byte
# I/os (max)
40
Number Of Timers - General Purpose
3
Operating Supply Voltage (typ)
5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
4.5V
On-chip Adc
7-chx10-bit
Instruction Set Architecture
CISC
Operating Temp Range
0C to 70C
Operating Temperature Classification
Commercial
Mounting
Surface Mount
Pin Count
68
Package Type
PLCC
Processor Series
P87C5x
Core
80C51
Data Bus Width
8 bit
Data Ram Size
512 B
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
40
Number Of Timers
3
Operating Supply Voltage
2.7 V to 5.5 V
Maximum Operating Temperature
+ 70 C
Mounting Style
SMD/SMT
3rd Party Development Tools
PK51, CA51, A51, ULINK2
Minimum Operating Temperature
0 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
Compliant
Other names
568-1254-5
935263385512
P87C554SBAA

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
P87C554SBAA,512
Manufacturer:
NXP Semiconductors
Quantity:
10 000
also incorporated on the P87C554. The purpose of a watchdog timer
Philips Semiconductors
Timer T3, The Watchdog Timer
In addition to Timer T2 and the standard timers, a watchdog timer is
is to reset the microcontroller if it enters erroneous processor states
(possibly caused by electrical noise or RFI) within a reasonable
period of time. An analogy is the “dead man’s handle” in railway
locomotives. When enabled, the watchdog circuitry will generate a
system reset if the user program fails to reload the watchdog timer
within a specified length of time known as the “watchdog interval.”
Watchdog Circuit Description: The watchdog timer (Timer T3)
consists of an 8-bit timer with an 11-bit prescaler as shown in
Figure 18. The prescaler is fed with a signal whose frequency is
1/12 the oscillator frequency (1 MHz with a 12 MHz oscillator). The
8-bit timer is incremented every “t” seconds, where:
t = 12
(= 1.5 ms at f
If the 8-bit timer overflows, a short internal reset pulse is generated
which will reset the P87C554. A short output reset pulse is also
generated at the RST pin. This short output pulse (3 machine
cycles) may be destroyed if the RST pin is connected to a capacitor.
This would not, however, affect the internal reset operation.
Watchdog operation is activated when external pin EW is tied low.
When EW is tied low, it is impossible to disable the watchdog
operation by software.
How to Operate the Watchdog Timer: The watchdog timer has to
be reloaded within periods that are shorter than the programmed
watchdog interval; otherwise the watchdog timer will overflow and a
system reset will be generated. The user program must therefore
continually execute sections of code which reload the watchdog
timer. The period of time elapsed between execution of these
sections of code must never exceed the watchdog interval. When
using a 16 MHz oscillator, the watchdog interval is programmable
2002 Mar 25
80C51 8-bit microcontroller – 12 clock operation
16K/512 OTP/RAM, 8 channel 10-bit A/D, I
capture/compare, high I/O
2048
f
OSC
OSC
EW
/6
1/f
= 16 MHz; = 1 ms at f
OSC
WRITE T3
PRESCALER (11-BIT)
OSC
CLEAR
= 24 MHz)
Figure 18. Watchdog Timer
2
C, PWM,
INTERNAL BUS
PCON.4
TIMER T3 (8-BIT)
INTERNAL BUS
CLEAR
LOAD LOADEN
20
WLE
between 1.5 ms and 392 ms. When using a 24 MHz oscillator, the
watchdog interval is programmable between 1 ms and 255 ms.
In order to prepare software for watchdog operation, a programmer
should first determine how long his system can sustain an
erroneous processor state. The result will be the maximum
watchdog interval. As the maximum watchdog interval becomes
shorter, it becomes more difficult for the programmer to ensure that
the user program always reloads the watchdog timer within the
watchdog interval, and thus it becomes more difficult to implement
watchdog operation.
The programmer must now partition the software in such a way that
reloading of the watchdog is carried out in accordance with the above
requirements. The programmer must determine the execution times
of all software modules. The effect of possible conditional branches,
subroutines, external and internal interrupts must all be taken into
account. Since it may be very difficult to evaluate the execution
times of some sections of code, the programmer should use worst
case estimations. In any event, the programmer must make sure
that the watchdog is not activated during normal operation.
The watchdog timer is reloaded in two stages in order to prevent
erroneous software from reloading the watchdog. First PCON.4
(WLE) must be set. The T3 may be loaded. When T3 is loaded,
PCON.4 (WLE) is automatically reset. T3 cannot be loaded if
PCON.4 (WLE) is reset. Reload code may be put in a subroutine as
it is called frequently. Since Timer T3 is an up-counter, a reload
value of 00H gives the maximum watchdog interval (510 ms with a
12 MHz oscillator), and a reload value of 0FFH gives the minimum
watchdog interval (2 ms with a 12 MHz oscillator).
In the idle mode, the watchdog circuitry remains active. When
watchdog operation is implemented, the power-down mode cannot
be used since both states are contradictory. Thus, when watchdog
operation is enabled by tying external pin EW low, it is impossible to
enter the power-down mode, and an attempt to set the power-down
bit (PCON.1) will have no effect. PCON.1 will remain at logic 0.
INTERNAL
RESET
OVERFLOW
LOADEN
PD
PCON.1
V
DD
P
R
SU00955
RST
RST
P87C554
Product data

Related parts for P87C554SBAA,512