MC56F8367VPYE Freescale Semiconductor, MC56F8367VPYE Datasheet - Page 39

IC DSP 16BIT 60MHZ 160-LQFP

MC56F8367VPYE

Manufacturer Part Number
MC56F8367VPYE
Description
IC DSP 16BIT 60MHZ 160-LQFP
Manufacturer
Freescale Semiconductor
Series
56F8xxxr
Datasheets

Specifications of MC56F8367VPYE

Core Processor
56800
Core Size
16-Bit
Speed
60MHz
Connectivity
CAN, EBI/EMI, SCI, SPI
Peripherals
POR, PWM, Temp Sensor, WDT
Number Of I /o
76
Program Memory Size
544KB (272K x 16)
Program Memory Type
FLASH
Ram Size
18K x 16
Voltage - Supply (vcc/vdd)
2.25 V ~ 3.6 V
Data Converters
A/D 16x12b
Oscillator Type
External
Operating Temperature
-40°C ~ 105°C
Package / Case
160-LQFP
Cpu Family
56F8xxx
Device Core Size
16b
Frequency (max)
60MHz
Interface Type
CAN/SCI/SPI
Total Internal Ram Size
36KB
# I/os (max)
76
Number Of Timers - General Purpose
4
Operating Supply Voltage (typ)
3.3V
Operating Supply Voltage (max)
3.6V
Operating Supply Voltage (min)
3V
On-chip Adc
4(4-chx12-bit)
Instruction Set Architecture
CISC
Operating Temp Range
-40C to 105C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
160
Package Type
LQFP
Data Bus Width
16 bit
Processor Series
MC56F83xx
Core
56800E
Numeric And Arithmetic Format
Fixed-Point
Device Million Instructions Per Second
60 MIPs
Maximum Clock Frequency
60 MHz
Number Of Programmable I/os
76
Data Ram Size
36 KB
Operating Supply Voltage
3.3 V
Maximum Operating Temperature
+ 105 C
Mounting Style
SMD/SMT
Development Tools By Supplier
MC56F8367EVME
Minimum Operating Temperature
- 40 C
Package
160LQFP
Family Name
56F8xxx
Maximum Speed
60 MHz
Number Of Timers
4
For Use With
MC56F8367EVME - EVAL BOARD FOR MC56F83X
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC56F8367VPYE
Manufacturer:
AM
Quantity:
90
Part Number:
MC56F8367VPYE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC56F8367VPYE
Manufacturer:
FREESCALE
Quantity:
20 000
Part 3 On-Chip Clock Synthesis (OCCS)
3.1 Introduction
Refer to the OCCS chapter of the 56F8300 Peripheral User Manual for a full description of the OCCS.
The material contained here identifies the specific features of the OCCS design.
specific OCCS block diagram to reference in the OCCS chapter of the 56F8300 Peripheral User Manual.
3.2 External Clock Operation
The system clock can be derived from an external crystal, ceramic resonator, or an external system clock
signal. To generate a reference frequency using the internal oscillator, a reference crystal or ceramic
resonator must be connected between the EXTAL and XTAL pins.
3.2.1
The internal oscillator is also designed to interface with a parallel-resonant crystal resonator in the
frequency range specified for the external crystal in
is shown in
crystal parameters determine the component values required to provide maximum stability and reliable
Freescale Semiconductor
Preliminary
CLKMODE
Crystal Oscillator
Figure
EXTAL
XTAL
3-2. Follow the crystal supplier’s recommendations when selecting a crystal, since
Crystal
OSC
÷ (
Prescaler
PLLCID
1,2,4,8
Figure 3-1 OCCS Block Diagram
)
56F8367 Technical Data, Rev. 8
x (1 to 128)
Detector
PLLDB
Lock
PLL
Reference
Detector
Loss of
Clock
F
Table
OUT
Prescaler CLK
Bus Interface & Control
÷
2
10-13. A recommended crystal oscillator circuit
F
OUT/2
PLLCOD
Loss of Reference
÷ (
Postscaler
Clock Interrupt
1,2,4,8
)
LCK
Postscaler CLK
ZSRC
SYS_CLK2
Source to SIM
Figure 3-1
Interface
Bus
shows the
Introduction
39

Related parts for MC56F8367VPYE