PIC18F86K90-I/PT Microchip Technology, PIC18F86K90-I/PT Datasheet - Page 38

no-image

PIC18F86K90-I/PT

Manufacturer Part Number
PIC18F86K90-I/PT
Description
64kB Flash, 4kB RAM, 1kB EE, 16MIPS, NanoWatt XLP, LCD, 5V 80 TQFP 12x12x1mm TRA
Manufacturer
Microchip Technology
Series
PIC® XLP™ 18Fr

Specifications of PIC18F86K90-I/PT

Core Processor
PIC
Core Size
8-Bit
Speed
64MHz
Connectivity
I²C, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number Of I /o
69
Program Memory Size
64KB (32K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 24x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
80-TQFP
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F86K90-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC18F86K90-I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Company:
Part Number:
PIC18F86K90-I/PT
Quantity:
492
Part Number:
PIC18F86K90-I/PTRSL
Manufacturer:
Microchip Technology
Quantity:
10 000
PIC18F87K90 FAMILY
2.6
Many microcontrollers have options for at least two
oscillators: a high-frequency primary oscillator and a
low-frequency
Section 3.0 “Oscillator Configurations” for details).
The oscillator circuit should be placed on the same
side of the board as the device. Place the oscillator
circuit close to the respective oscillator pins with no
more than 0.5 inch (12 mm) between the circuit
components and the pins. The load capacitors should
be placed next to the oscillator itself, on the same side
of the board.
Use a grounded copper pour around the oscillator cir-
cuit to isolate it from surrounding circuits. The
grounded copper pour should be routed directly to the
MCU ground. Do not run any signal traces or power
traces inside the ground pour. Also, if using a two-sided
board, avoid any traces on the other side of the board
where the crystal is placed.
Layout suggestions are shown in Figure 2-4. In-line
packages may be handled with a single-sided layout
that completely encompasses the oscillator pins. With
fine-pitch packages, it is not always possible to com-
pletely surround the pins and components. A suitable
solution is to tie the broken guard sections to a mirrored
ground layer. In all cases, the guard trace(s) must be
returned to ground.
In planning the application’s routing and I/O assign-
ments, ensure that adjacent port pins and other signals
in close proximity to the oscillator are benign (i.e., free
of high frequencies, short rise and fall times, and other
similar noise).
For additional information and design guidance on
oscillator circuits, please refer to these Microchip
Application Notes, available at the corporate web site
(www.microchip.com):
• AN826, “Crystal Oscillator Basics and Crystal
• AN849, “Basic PICmicro
• AN943, “Practical PICmicro
• AN949, “Making Your Oscillator Work”
2.7
Unused I/O pins should be configured as outputs and
driven to a logic low state. Alternatively, connect a 1 kΩ
to 10 kΩ resistor to V
output to logic low.
DS39957B-page 38
Selection for rfPIC™ and PICmicro
and Design”
External Oscillator Pins
Unused I/Os
secondary
SS
on unused pins and drive the
®
Oscillator Design”
®
oscillator
Oscillator Analysis
®
Devices”
(refer
Preliminary
to
FIGURE 2-4:
(tied to ground)
Timer1 Oscillator
Bottom Layer
Copper Pour
Oscillator
GND
Primary
Crystal
OSCO
OSCI
C1
C2
T1 Oscillator: C1
DEVICE PINS
Single-Sided and In-Line Layouts:
(tied to ground)
Fine-Pitch (Dual-Sided) Layouts:
Copper Pour
SUGGESTED PLACEMENT
OF THE OSCILLATOR
CIRCUIT
Top Layer Copper Pour
`
`
(tied to ground)
 2010 Microchip Technology Inc.
`
Primary Oscillator
T1 Oscillator: C2
Crystal
DEVICE PINS
C2
C1
Oscillator
Crystal
OSC1
OSC2
GND
T1OSO
T1OS I

Related parts for PIC18F86K90-I/PT