PIC18F86K90-I/PT Microchip Technology, PIC18F86K90-I/PT Datasheet - Page 64

no-image

PIC18F86K90-I/PT

Manufacturer Part Number
PIC18F86K90-I/PT
Description
64kB Flash, 4kB RAM, 1kB EE, 16MIPS, NanoWatt XLP, LCD, 5V 80 TQFP 12x12x1mm TRA
Manufacturer
Microchip Technology
Series
PIC® XLP™ 18Fr

Specifications of PIC18F86K90-I/PT

Core Processor
PIC
Core Size
8-Bit
Speed
64MHz
Connectivity
I²C, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number Of I /o
69
Program Memory Size
64KB (32K x 16)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 24x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
80-TQFP
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F86K90-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC18F86K90-I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Company:
Part Number:
PIC18F86K90-I/PT
Quantity:
492
Part Number:
PIC18F86K90-I/PTRSL
Manufacturer:
Microchip Technology
Quantity:
10 000
PIC18F87K90 FAMILY
4.7
The Ultra Low-Power Wake-up (ULPWU) on pin, RA0,
allows a slow falling voltage to generate an interrupt
without excess current consumption.
To use this feature:
1.
2.
3.
4.
5.
When the voltage on RA0 drops below V
wakes up and executes the next instruction.
This feature provides a low-power technique for
periodically waking up the device from Sleep mode.
The time-out is dependent on the discharge time of the
RC circuit on RA0.
When the ULPWU module wakes the device from
Sleep mode, the ULPLVL bit (WDTCON<5>) is set.
Software can check this bit upon wake-up to determine
the wake-up source.
See Example 4-1 for initializing the ULPWU module.
EXAMPLE 4-1:
DS39957B-page 64
TRISAbits.TRISA0 = 0;
PORTAbits.RA0 = 1;
for(i = 0; i < 10000; i++) Nop();
TRISAbits.TRISA0 = 1;
WDTCONbits.ULPEN = 1;
WDTCONbits.ULPSINK = 1;
OSCCONbits.IDLEN = 0;
Sleep();
Charge the capacitor on RA0 by configuring the
RA0 pin to an output and setting it to ‘1’.
Stop charging the capacitor by configuring RA0
as an input.
Discharge the capacitor by setting the ULPEN
and ULPSINK bits in the WDTCON register.
Configure Sleep mode.
Enter Sleep mode.
Ultra Low-Power Wake-up
//***************************
//Charge the capacitor on RA0
//***************************
//*****************************
//Stop Charging the capacitor
//on RA0
//*****************************
//*****************************
//Enable the Ultra Low Power
//Wakeup module and allow
//capacitor discharge
//*****************************
//For Sleep
//Enter Sleep Mode
//
//for sleep, execution will
//resume here
ULTRA LOW-POWER
WAKE-UP INITIALIZATION
IL
, the device
Preliminary
A series resistor, between RA0 and the external capac-
itor, provides overcurrent protection for the RA0/AN0/
ULPWU pin and enables software calibration of the
time-out (see Figure 4-9).
FIGURE 4-9:
A timer can be used to measure the charge time and
discharge time of the capacitor. The charge time can
then be adjusted to provide the desired delay in Sleep.
This technique compensates for the affects of
temperature, voltage and component accuracy. The
peripheral can also be configured as a simple
programmable
temperature sensor.
Note:
RA0/AN0/ULPWU
For more information, see AN 879, “Using
the Microchip Ultra Low-Power Wake-up
Module” (DS00879).
Low-Voltage
ULTRA LOW-POWER
WAKE-UP INITIALIZATION
 2010 Microchip Technology Inc.
Detect
(LVD)
or

Related parts for PIC18F86K90-I/PT