ATmega8535 Atmel Corporation, ATmega8535 Datasheet - Page 188

no-image

ATmega8535

Manufacturer Part Number
ATmega8535
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega8535

Flash (kbytes)
8 Kbytes
Pin Count
44
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
32
Ext Interrupts
3
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
0.5
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
4
Input Capture Channels
1
Pwm Channels
4
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega8535-16AC
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega8535-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega8535-16AI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega8535-16AJ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega8535-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega8535-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega8535-16AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega8535-16JI
Quantity:
8 831
Part Number:
ATmega8535-16JI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega8535-16JU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega8535-16MU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega8535-16PC
Manufacturer:
ATMEL
Quantity:
1 500
Part Number:
ATmega8535-16PC
Manufacturer:
ATMEL
Quantity:
1 500
Part Number:
ATmega8535-16PI
Manufacturer:
ATMEL
Quantity:
1 500
Transmission Modes
188
ATmega8535(L)
The TWI can operate in one of four major modes. These are named Master Transmitter
(MT), Master Receiver (MR), Slave Transmitter (ST), and Slave Receiver (SR). Several
of these modes can be used in the same application. As an example, the TWI can use
MT mode to write data into a TWI EEPROM, MR mode to read the data back from the
EEPROM. If other masters are present in the system, some of these might transmit data
to the TWI, and then SR mode would be used. It is the application software that decides
which modes are legal.
The following sections describe each of these modes. Possible status codes are
described along with figures detailing data transmission in each of the modes. These fig-
ures contain the following abbreviations:
S:
Rs:
R:
W:
A:
A:
Data:
P:
SLA:
In Figure 87 to Figure 93, circles are used to indicate that the TWINT Flag is set. The
numbers in the circles show the status code held in TWSR, with the prescaler bits
masked to zero. At these points, actions must be taken by the application to continue or
complete the TWI transfer. The TWI transfer is suspended until the TWINT Flag is
cleared by software.
When the TWINT Flag is set, the status code in TWSR is used to determine the appro-
priate software action. For each status code, the required software action and details of
the following serial transfer are given in Table 75 to Table 78. Note that the prescaler
bits are masked to zero in these tables.
START condition
REPEATED START condition
Read bit (high level at SDA)
Write bit (low level at SDA)
Acknowledge bit (low level at SDA)
Not acknowledge bit (high level at SDA)
8-bit data byte
STOP condition
Slave Address
2502K–AVR–10/06

Related parts for ATmega8535