ATtiny48 Atmel Corporation, ATtiny48 Datasheet - Page 195

no-image

ATtiny48

Manufacturer Part Number
ATtiny48
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATtiny48

Flash (kbytes)
4 Kbytes
Pin Count
32
Max. Operating Frequency
12 MHz
Cpu
8-bit AVR
# Of Touch Channels
12
Hardware Qtouch Acquisition
No
Max I/o Pins
28
Ext Interrupts
28
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
0.25
Eeprom (bytes)
64
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
Yes
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
4
Input Capture Channels
1
Pwm Channels
2
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATtiny48-10AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny48-12AU
Manufacturer:
ATMEL
Quantity:
3 046
Part Number:
ATtiny48-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATtiny48-AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Company:
Part Number:
ATtiny48-AU
Quantity:
15 000
Company:
Part Number:
ATtiny48-AU
Quantity:
35
Part Number:
ATtiny48-AUR
Manufacturer:
Atmel
Quantity:
5 975
Part Number:
ATtiny48-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATtiny48-MU
Manufacturer:
Atmel
Quantity:
5
Part Number:
ATtiny48-MU
Manufacturer:
LT
Quantity:
416
Part Number:
ATtiny48-MU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny48-MUR
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny48-PU
Manufacturer:
ATMEL
Quantity:
5 530
8008H–AVR–04/11
D. Load Data High Byte
E. Latch Data
F. Repeat B through E until the entire buffer is filled or until all data within the page is loaded.
G. Load Address High byte
H. Program Page
I. Repeat B through H until the entire Flash is programmed or until all data has been
programmed.
J. End Page Programming
3. Give CLKI a positive pulse. This loads the data byte.
1. Set BS1 to “1”. This selects high data byte.
2. Set XA1, XA0 to “01”. This enables data loading.
3. Set DATA = Data high byte (0x00 – 0xFF).
4. Give CLKI a positive pulse. This loads the data byte.
1. Set BS1 to “1”. This selects high data byte.
2. Give PAGEL a positive pulse. This latches the data bytes. (See
1. Set XA1, XA0 to “00”. This enables address loading.
2. Set BS1 to “1”. This selects high address.
3. Set DATA = Address high byte (0x00 – 0xFF).
4. Give CLKI a positive pulse. This loads the address high byte.
1. Give WR a negative pulse. This starts programming of the entire page of data.
2. Wait until RDY/BSY goes high (See
1. 1. Set XA1, XA0 to “10”. This enables command loading.
2. Set DATA to “0000 0000”. This is the command for No Operation.
3. Give CLKI a positive pulse. This loads the command, and the internal write signals are
While the lower bits in the address are mapped to words within the page, the higher bits
address the pages within the FLASH. This is illustrated in
that if less than eight bits are required to address words in the page (pagesize < 256), the
most significant bit(s) in the address low byte are used to address the page when performing
a Page Write.
waveforms)
RDY/BSY goes low.
reset.
Figure 21-3
for signal waveforms).
Figure 21-2 on page
Figure 21-3
ATtiny48/88
for signal
196. Note
195

Related parts for ATtiny48