ATtiny48 Atmel Corporation, ATtiny48 Datasheet - Page 22

no-image

ATtiny48

Manufacturer Part Number
ATtiny48
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATtiny48

Flash (kbytes)
4 Kbytes
Pin Count
32
Max. Operating Frequency
12 MHz
Cpu
8-bit AVR
# Of Touch Channels
12
Hardware Qtouch Acquisition
No
Max I/o Pins
28
Ext Interrupts
28
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
0.25
Eeprom (bytes)
64
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
Yes
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
4
Input Capture Channels
1
Pwm Channels
2
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATtiny48-10AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny48-12AU
Manufacturer:
ATMEL
Quantity:
3 046
Part Number:
ATtiny48-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATtiny48-AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Company:
Part Number:
ATtiny48-AU
Quantity:
15 000
Company:
Part Number:
ATtiny48-AU
Quantity:
35
Part Number:
ATtiny48-AUR
Manufacturer:
Atmel
Quantity:
5 975
Part Number:
ATtiny48-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATtiny48-MU
Manufacturer:
Atmel
Quantity:
5
Part Number:
ATtiny48-MU
Manufacturer:
LT
Quantity:
416
Part Number:
ATtiny48-MU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny48-MUR
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny48-PU
Manufacturer:
ATMEL
Quantity:
5 530
5.3.5
22
ATtiny48/88
Preventing EEPROM Corruption
To write an EEPROM memory location follow the procedure below:
The EEPE bit remains set until the write operation has completed. While the device is busy with
programming, it is not possible to do any other EEPROM operations.
During periods of low V
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.
At low supply voltages data in EEPROM can be corrupted in two ways:
EEPROM data corruption is avoided by keeping the device in reset during periods of insufficient
power supply voltage. This is easily done by enabling the internal Brown-Out Detector (BOD). If
BOD detection levels are not sufficient for the design, an external reset circuit for low V
used.
Provided that supply voltage is sufficient, an EEPROM write operation will be completed even
when a reset occurs.
• Poll the EEPROM Program Enable bit (EEPE) in EEPROM Control Register (EECR) to make
• Set mode of programming by writing EEPROM Programming Mode bits (EEPM0 and
• Write target address to EEPROM Address Registers (EEARH/EEARL).
• Write target data to EEPROM Data Register (EEDR).
• Enable write by setting EEPROM Master Program Enable (EEMPE) in EEPROM Control
• The supply voltage is too low to maintain proper operation of an otherwise legitimate
• The supply voltage is too low for the CPU and instructions may be executed incorrectly.
sure no other EEPROM operations are in process. If set, wait to clear.
EEPM1) in EEPROM Control Register (EECR). Alternatively, data can be written in one
operation or the write procedure can be split up in erase, only, and write, only.
Register (EECR). Within four clock cycles, start the write operation by setting the EEPROM
Program Enable bit (EEPE) in the EEPROM Control Register (EECR). During the write
operation, the CPU is halted for two clock cycles before executing the next instruction.
EEPROM program sequence.
CC
, the EEPROM data can be corrupted because the supply voltage is
8008H–AVR–04/11
CC
can be

Related parts for ATtiny48