ADM1064 Analog Devices, ADM1064 Datasheet - Page 19

no-image

ADM1064

Manufacturer Part Number
ADM1064
Description
Manufacturer
Analog Devices
Datasheet

Specifications of ADM1064

# Supplies Monitored
10
Volt Monitoring Accuracy
1%
# Output Drivers
10
Fet Drive/enable Output
Both
Voltage Readback
12-bit ADC
Package
40 ld LFCSP ,48 ld TQFP

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ADM1064ACPZ
Manufacturer:
AD
Quantity:
1 357
Part Number:
ADM1064ACPZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
ADM1064ASUZ
Manufacturer:
ADI
Quantity:
250
Part Number:
ADM1064ASUZ
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
ADM1064ASUZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
VP1
VX5
Monitoring Fault Detector
The monitoring fault detector block is used to detect a failure
on an input. The logical function implementing this is a wide
OR gate that can detect when an input deviates from its expected
condition. The clearest demonstration of the use of this block
is in the PWRGD state, where the monitor block indicates that
a failure on one or more of the VP1,VP2, or VP3 inputs has
occurred.
No programmable delay is available in this block because the
triggering of a fault condition is likely to be caused by a supply
falling out of tolerance. In this situation, the device needs to
react as quickly as possible. Some latency occurs when moving
out of this state because it takes a finite amount of time (~20 μs)
for the state configuration to download from EEPROM into the SE.
Figure 26 is a block diagram of the monitoring fault detector.
LOGIC INPUT CHANGE
OR FAULT DETECTION
SUPPLY FAULT
Figure 26. Monitoring Fault Detector Block Diagram
DETECTION
WARNINGS
MONITORING FAULT
DETECTOR
1-BIT FAULT
DETECTOR
1-BIT FAULT
DETECTOR
1-BIT FAULT
DETECTOR
MASK
SENSE
MASK
SENSE
MASK
FAULT
FAULT
FAULT
Rev. D | Page 19 of 32
Timeout Detector
The timeout detector allows the user to trap a failure to ensure
proper progress through a power-up or power-down sequence.
In the sample application shown in Figure 25, the timeout next-
state transition is from the EN3V3 and EN2V5 states. For the
EN3V3 state, the signal 3V3ON is asserted on the PDO1 output
pin upon entry to this state to turn on a 3.3 V supply. This supply
rail is connected to the VP2 pin, and the sequence detector looks
for the VP2 pin to go above its undervoltage threshold, which is
set in the supply fault detector (SFD) attached to that pin.
The power-up sequence progresses when this change is
detected. If, however, the supply fails (perhaps due to a short
circuit overloading this supply), the timeout block traps the
problem. In this example, if the 3.3 V supply fails within 10 ms,
the SE moves to the DIS3V3 state and turns off this supply by
bringing PDO1 low. It also indicates that a fault has occurred by
taking PDO3 high. Timeout delays of 100 μs to 400 ms can be
programmed.
FAULT AND STATUS REPORTING
The ADM1064 has a fault latch for recording faults. Two registers,
FSTAT1 and FSTAT2, are set aside for this purpose. A single bit
is assigned to each input of the device, and a fault on that input
sets the relevant bit. The contents of the fault register can be
read out over the SMBus to determine which input(s) faulted.
The fault register can be enabled/disabled in each state. To latch
data from one state, ensure that the fault latch is disabled in the
following state. This ensures that only real faults are captured
and not, for example, undervoltage conditions that may be
present during a power-up or power-down sequence.
The ADM1064 also has a number of status registers. These include
more detailed information, such as whether an undervoltage or
overvoltage fault is present on a particular input. The status
registers also include information on ADC limit faults. Note that
the data in the status registers is not latched in any way and,
therefore, is subject to change at any time.
See the AN-698 Application Note at
details about the ADM1064 registers.
www.analog.com
ADM1064
for full

Related parts for ADM1064