ATMEGA169 ATMEL [ATMEL Corporation], ATMEGA169 Datasheet - Page 51

no-image

ATMEGA169

Manufacturer Part Number
ATMEGA169
Description
8-bit Microcontroller with 16K Bytes In-System Programmable Flash
Manufacturer
ATMEL [ATMEL Corporation]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA169-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA169-16AI SL709
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA169-16AI SL710
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA169-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA169A-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA169P-15AT
Manufacturer:
PANASONIC
Quantity:
301
Part Number:
ATMEGA169P-15AT
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA169P-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA169PA-MU
Manufacturer:
ATMEL
Quantity:
31
Part Number:
ATMEGA169PAAU
Manufacturer:
INF
Quantity:
4 275
External Interrupts
Pin Change Interrupt
Timing
2514P–AVR–07/06
The External Interrupts are triggered by the INT0 pin or any of the PCINT15..0 pins.
Observe that, if enabled, the interrupts will trigger even if the INT0 or PCINT15..0 pins
are configured as outputs. This feature provides a way of generating a software inter-
rupt. The pin change interrupt PCI1 will trigger if any enabled PCINT15..8 pin toggles.
Pin change interrupts PCI0 will trigger if any enabled PCINT7..0 pin toggles. The
PCMSK1 and PCMSK0 Registers control which pins contribute to the pin change inter-
rupts. Pin change interrupts on PCINT15..0 are detected asynchronously. This implies
that these interrupts can be used for waking the part also from sleep modes other than
Idle mode.
The INT0 interrupts can be triggered by a falling or rising edge or a low level. This is set
up as indicated in the specification for the External Interrupt Control Register A –
EICRA. When the INT0 interrupt is enabled and is configured as level triggered, the
interrupt will trigger as long as the pin is held low. Note that recognition of falling or rising
edge interrupts on INT0 requires the presence of an I/O clock, described in “Clock Sys-
tems and their Distribution” on page 23. Low level interrupt on INT0 is detected
asynchronously. This implies that this interrupt can be used for waking the part also
from sleep modes other than Idle mode. The I/O clock is halted in all sleep modes
except Idle mode.
Note that if a level triggered interrupt is used for wake-up from Power-down, the
required level must be held long enough for the MCU to complete the wake-up to trigger
the level interrupt. If the level disappears before the end of the Start-up Time, the MCU
will still wake up, but no interrupt will be generated. The start-up time is defined by the
SUT and CKSEL Fuses as described in “System Clock and Clock Options” on page 23.
An example of timing of a pin change interrupt is shown in Figure 21.
Figure 21. Pin Change Interrupt
pcint_setflag
pcint_in_(n)
PCINT(n)
pcint_syn
pin_sync
pin_lat
PCINT(0)
PCIF
clk
clk
LE
pin_lat
D
Q
pin_sync
PCINT(0) in PCMSK(x)
pcint_in_(0)
0
x
clk
pcint_syn
ATmega169/V
pcint_setflag
PCIF
51

Related parts for ATMEGA169