AM29F160D AMD [Advanced Micro Devices], AM29F160D Datasheet - Page 21

no-image

AM29F160D

Manufacturer Part Number
AM29F160D
Description
16 Megabit (2 M x 8-Bit/1 M x 16-Bit) CMOS 5.0 Volt-only, Boot Sector Flash Memory
Manufacturer
AMD [Advanced Micro Devices]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AM29F160DB-70EC
Manufacturer:
AMD
Quantity:
1 909
Part Number:
AM29F160DB-70EF
Manufacturer:
AMD
Quantity:
1
Part Number:
AM29F160DB-70EI
Manufacturer:
SPANSION
Quantity:
191
Part Number:
AM29F160DB-75EE
Manufacturer:
SPANSION
Quantity:
585
Part Number:
AM29F160DB-75EF
Quantity:
22
Part Number:
AM29F160DB-90E1
Manufacturer:
AMD
Quantity:
750
Part Number:
AM29F160DB-90EI
Manufacturer:
AMD
Quantity:
20 000
Part Number:
AM29F160DT-75EF
Manufacturer:
AMD
Quantity:
20 000
Note: See the appropriate Command Definitions table for
program command sequence.
Chip Erase Command Sequence
Chip erase is a six-bus-cycle operation. The chip erase
command sequence is initiated by writing two unlock
cycles, followed by a set-up command. Two additional
unlock write cycles are then followed by the chip erase
command, which in turn invokes the Embedded Erase
algorithm. The device does not require the system to
preprogram prior to erase. The Embedded Erase algo-
rithm automatically preprograms and verifies the entire
memory for an all zero data pattern prior to electrical
erase. The system is not required to provide any con-
trols or timings during these operations. The Command
Definitions table shows the address and data require-
ments for the chip erase command sequence.
Any commands written to the chip during the Embed-
ded Erase algorithm are ignored. Note that a hardware
reset during the chip erase operation immediately ter-
minates the operation. The Chip Erase command se-
quence should be reinitiated once the device has
returned to reading array data, to ensure data integrity.
20
Increment Address
Figure 3. Program Operation
in progress
Embedded
algorithm
Program
No
Command Sequence
Write Program
Last Address?
Programming
from System
Verify Data?
Completed
Data Poll
START
Yes
Yes
Am29F160D
No
The system can determine the status of the erase
operation by using DQ7, DQ6, DQ2, or RY/BY#. See
“Write Operation Status” for information on these
status bits. When the Embedded Erase algorithm is
complete, the device returns to reading array data
and addresses are no longer latched.
Figure 4 illustrates the algorithm for the erase opera-
tion. See the Erase/Program Operations tables in “AC
Characteristics” for parameters, and to the Chip/Sector
Erase Operation Timings for timing waveforms.
Sector Erase Command Sequence
Sector erase is a six bus cycle operation. The sector
erase command sequence is initiated by writing two un-
lock cycles, followed by a set-up command. Two addi-
tional unlock write cycles are then followed by the
address of the sector to be erased, and the sector
erase command. The Command Definitions table
shows the address and data requirements for the sec-
tor erase command sequence.
The device does not require the system to preprogram
the memory prior to erase. The Embedded Erase algo-
rithm automatically programs and verifies the sector for
an all zero data pattern prior to electrical erase. The
system is not required to provide any controls or tim-
ings during these operations.
After the command sequence is written, a sector erase
time-out of 50 µs begins. During the time-out period,
additional sector addresses and sector erase com-
mands may be written. Loading the sector erase buffer
may be done in any sequence, and the number of sec-
tors may be from one sector to all sectors. The time be-
tween these additional cycles must be less than 50 µs,
otherwise the last address and command might not be
accepted, and erasure may begin. It is recommended
that processor interrupts be disabled during this time to
ensure all commands are accepted. The interrupts can
be re-enabled after the last Sector Erase command is
written. If the time between additional sector erase
commands can be assumed to be less than 50 µs, the
system need not monitor DQ3. Any command other
than Sector Erase or Erase Suspend during the
time-out period resets the device to reading array
data. The system must rewrite the command sequence
and any additional sector addresses and commands.
The system can monitor DQ3 to determine if the sector
erase timer has timed out. (See the “DQ3: Sector Erase
Timer” section.) The time-out begins from the rising
edge of the final WE# pulse in the command sequence.
Once the sector erase operation has begun, only the
Erase Suspend command is valid. All other commands
are ignored. Note that a hardware reset during the
sector erase operation immediately terminates the op-
eration. The Sector Erase command sequence should

Related parts for AM29F160D