PIC16F88-I/ML Microchip Technology, PIC16F88-I/ML Datasheet - Page 440

IC MCU FLASH 4KX14 EEPROM 28QFN

PIC16F88-I/ML

Manufacturer Part Number
PIC16F88-I/ML
Description
IC MCU FLASH 4KX14 EEPROM 28QFN
Manufacturer
Microchip Technology
Series
PIC® 16Fr

Specifications of PIC16F88-I/ML

Core Size
8-Bit
Program Memory Size
7KB (4K x 14)
Core Processor
PIC
Speed
20MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
16
Program Memory Type
FLASH
Eeprom Size
256 x 8
Ram Size
368 x 8
Voltage - Supply (vcc/vdd)
4 V ~ 5.5 V
Data Converters
A/D 7x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-VQFN Exposed Pad, 28-HVQFN, 28-SQFN, 28-DHVQFN
Controller Family/series
PIC16F
No. Of I/o's
16
Eeprom Memory Size
256Byte
Ram Memory Size
368Byte
Cpu Speed
20MHz
No. Of Timers
3
Processor Series
PIC16F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
368 B
Interface Type
SSP, USART
Maximum Clock Frequency
20 MHz
Number Of Programmable I/os
16
Number Of Timers
8
Operating Supply Voltage
2 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE2000, DM163014
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT28QFN3 - SOCKET TRAN ICE 18DIP/28QFNAC164322 - MODULE SOCKET MPLAB PM3 28/44QFNAC164033 - ADAPTER 28QFN TO 18DIPDV007003 - PROGRAMMER UNIVERSAL PROMATE II
Lead Free Status / Rohs Status
 Details
PICmicro MID-RANGE MCU FAMILY
23.14
DS31023A-page 23-18
Design Tips
Question 1:
Answer 1:
1.
2.
3.
Question 2:
Answer 2:
After the holding capacitor is disconnected from the input channel, typically 100 ns after the GO
bit is set, the input channel may be changed.
Question 3:
Answer 3:
A very good reference for understanding A/D conversions is the “Analog-Digital Conversion
Handbook” third edition, published by Prentice Hall (ISBN 0-13-03-2848-0).
Make sure you are meeting all of the timing specifications. If you are turning the module
off and on, there is a minimum delay you must wait before taking a sample. If you are
changing input channels, there is a minimum delay you must wait for this as well, and
finally there is T
ADCON0 and should be between 1.6 and 6 s. If T
fully converted before the conversion is terminated, and if T
on the sampling capacitor can droop before the conversion is complete. These timing
specifications are provided in the
data sheet for device specific information.
Often the source impedance of the analog signal is high (greater than 1k ohms) so the
current drawn from the source to charge the sample capacitor can affect accuracy. If the
input signal does not change too quickly, try putting a 0.1 F capacitor on the analog input.
This capacitor will charge to the analog voltage being sampled and supply the instanta-
neous current needed to charge the 120 pF internal holding capacitor.
Finally, straight from the data book: “In systems where the device frequency is low, use of
the A/D clock derived from the device oscillator is preferred...this reduces, to a large
extent, the effects of digital switching noise.” and “In systems where the device will enter
SLEEP mode after start of A/D conversion, the RC clock source selection is required.This
method gives the highest accuracy.”
I find that the Analog to Digital Converter result is not always accurate.
What can I do to improve accuracy?
After starting an A/D conversion may I change the input channel (for my
next conversion)?
Do you know of a good reference on A/D’s?
AD
, which is the time selected for each bit conversion. This is selected in
Preliminary
“Electrical Specifications”
AD
is too short, the result may not be
AD
is made too long the voltage
1997 Microchip Technology Inc.
section. See the device

Related parts for PIC16F88-I/ML